rendercv/rendercv/data_models.py

1631 lines
59 KiB
Python

"""
This module contains all the necessary classes to store CV data. These classes are called
data models. The YAML input file is transformed into instances of these classes (i.e.,
the input file is read) with the
[`read_input_file`][rendercv.data_models.read_input_file] function. RenderCV utilizes
these instances to generate a $\\LaTeX$ file which is then rendered into a PDF file.
The data models are initialized with data validation to prevent unexpected bugs. During
the initialization, we ensure that everything is in the correct place and that the user
has provided a valid RenderCV input. This is achieved through the use of
[Pydantic](https://pypi.org/project/pydantic/). Each class method decorated with
`pydantic.model_validator` or `pydantic.field_validator` is executed automatically
during the data classes' initialization.
"""
from datetime import date as Date
from typing import Literal, Any, Type, Annotated, Optional, get_args
import importlib
import importlib.util
import importlib.machinery
import functools
from urllib.request import urlopen, HTTPError
from urllib.error import URLError
from http.client import InvalidURL
import json
import re
import ssl
import pathlib
import warnings
import annotated_types as at
import pydantic
import pydantic_extra_types.phone_numbers as pydantic_phone_numbers
import ruamel.yaml
from .themes.classic import ClassicThemeOptions
from .themes.moderncv import ModerncvThemeOptions
from .themes.sb2nov import Sb2novThemeOptions
from .themes.engineeringresumes import EngineeringresumesThemeOptions
# disable Pydantic warnings:
warnings.filterwarnings("ignore")
locale_catalog = {
"month": "month",
"months": "months",
"year": "year",
"years": "years",
"present": "present",
"to": "to",
"abbreviations_for_months": [
"Jan.",
"Feb.",
"Mar.",
"Apr.",
"May",
"June",
"July",
"Aug.",
"Sept.",
"Oct.",
"Nov.",
"Dec.",
],
}
def get_date_object(date: str | int) -> Date:
"""Parse a date string in YYYY-MM-DD, YYYY-MM, or YYYY format and return a
`datetime.date` object. This function is used throughout the validation process of
the data models.
Args:
date (str): The date string to parse.
Returns:
datetime.date: The parsed date.
"""
if isinstance(date, int):
date_object = Date.fromisoformat(f"{date}-01-01")
elif re.fullmatch(r"\d{4}-\d{2}-\d{2}", date):
# Then it is in YYYY-MM-DD format
date_object = Date.fromisoformat(date)
elif re.fullmatch(r"\d{4}-\d{2}", date):
# Then it is in YYYY-MM format
date_object = Date.fromisoformat(f"{date}-01")
elif re.fullmatch(r"\d{4}", date):
# Then it is in YYYY format
date_object = Date.fromisoformat(f"{date}-01-01")
elif date == "present":
date_object = Date.today()
else:
raise ValueError(
"This is not a valid date! Please use either YYYY-MM-DD, YYYY-MM, or"
" YYYY format."
)
return date_object
def format_date(date: Date) -> str:
"""Formats a `Date` object to a string in the following format: "Jan. 2021".
It uses month abbreviations, taken from
[Yale University Library](https://web.library.yale.edu/cataloging/months).
Example:
```python
format_date(Date(2024, 5, 1))
```
will return
`#!python "May 2024"`
Args:
date (Date): The date to format.
Returns:
str: The formatted date.
"""
# Month abbreviations,
# taken from: https://web.library.yale.edu/cataloging/months
abbreviations_of_months = locale_catalog["abbreviations_for_months"]
month = int(date.strftime("%m"))
month_abbreviation = abbreviations_of_months[month - 1]
year = date.strftime(format="%Y")
date_string = f"{month_abbreviation} {year}"
return date_string
class RenderCVBaseModel(pydantic.BaseModel):
"""This class is the parent class of all the data models in RenderCV. It has only
one difference from the default `pydantic.BaseModel`: It raises an error if an
unknown key is provided in the input file.
"""
model_config = pydantic.ConfigDict(extra="forbid", validation_error_cause=True)
# ======================================================================================
# Entry models: ========================================================================
# ======================================================================================
# Create an URL validator to validate social network URLs:
url_validator = pydantic.TypeAdapter(pydantic.HttpUrl) # type: ignore
# Create a custom type called RenderCVDate that accepts only strings in YYYY-MM-DD or
# YYYY-MM format:
# This type is used to validate the date fields in the data.
# See https://docs.pydantic.dev/2.5/concepts/types/#custom-types for more information
# about custom types.
date_pattern_for_validation = r"\d{4}-\d{2}(-\d{2})?"
RenderCVDate = Annotated[
str,
pydantic.Field(
pattern=date_pattern_for_validation,
),
]
class OneLineEntry(RenderCVBaseModel):
"""This class is the data model of `OneLineEntry`."""
label: str = pydantic.Field(
title="Name",
description="The label of the OneLineEntry.",
)
details: str = pydantic.Field(
title="Details",
description="The details of the OneLineEntry.",
)
class BulletEntry(RenderCVBaseModel):
"""This class is the data model of `BulletEntry`."""
bullet: str = pydantic.Field(
title="Bullet",
description="The bullet of the BulletEntry.",
)
class EntryWithDate(RenderCVBaseModel):
date: Optional[int | RenderCVDate | str] = pydantic.Field(
default=None,
title="Date",
description=(
"The date field can be filled in YYYY-MM-DD, YYYY-MM, or YYYY formats or as"
' an arbitrary string like "Fall 2023".'
),
examples=["2020-09-24", "Fall 2023"],
)
@pydantic.field_validator("date", mode="before")
@classmethod
def check_date(
cls, date: Optional[int | RenderCVDate | str]
) -> Optional[int | RenderCVDate | str]:
"""Check if the date is provided correctly."""
date_is_provided = date is not None
if date_is_provided:
if isinstance(date, str):
date_pattern = r"\d{4}(-\d{2})?(-\d{2})?"
if re.fullmatch(date_pattern, date):
# Then it is in YYYY-MM-DD, YYYY-MM, or YYYY format
# Check if it is a valid date:
get_date_object(date)
# check if it is in YYYY format, and if so, convert it to an
# integer:
if re.fullmatch(r"\d{4}", date):
# This is not required for start_date and end_date because they
# can't be casted into a general string. For date, this needs to
# be done manually, because it can be a general string.
date = int(date)
elif isinstance(date, Date):
# Pydantic parses YYYY-MM-DD dates as datetime.date objects. We need to
# convert them to strings because that's how RenderCV uses them.
date = date.isoformat()
return date
@functools.cached_property
def date_string(self) -> str:
if self.date:
if isinstance(self.date, int):
# Then it means only the year is provided
date_string = str(self.date)
else:
try:
date_object = get_date_object(self.date)
date_string = format_date(date_object)
except ValueError:
# Then it is a custom date string (e.g., "My Custom Date")
date_string = str(self.date)
else:
date_string = ""
return date_string
class PublicationEntryBase(RenderCVBaseModel):
title: str = pydantic.Field(
title="Title of the Publication",
description="The title of the publication.",
)
authors: list[str] = pydantic.Field(
title="Authors",
description="The authors of the publication in order as a list of strings.",
)
doi: Optional[str] = pydantic.Field(
default=None,
title="DOI",
description="The DOI of the publication.",
examples=["10.48550/arXiv.2310.03138"],
)
journal: Optional[str] = pydantic.Field(
default=None,
title="Journal",
description="The journal or the conference name.",
)
@pydantic.field_validator("doi")
@classmethod
def check_doi(cls, doi: Optional[str]) -> Optional[str]:
"""Check if the DOI exists in the DOI System."""
if doi is not None:
# see https://stackoverflow.com/a/60671292/18840665 for the explanation of
# the next line:
ssl._create_default_https_context = ssl._create_unverified_context # type: ignore
doi_url = f"http://doi.org/{doi}"
try:
urlopen(doi_url)
except HTTPError as err:
if err.code == 404:
raise ValueError("DOI cannot be found in the DOI System!")
except (InvalidURL, URLError):
raise ValueError("This DOI is not valid!")
return doi
@functools.cached_property
def doi_url(self) -> str:
"""Return the URL of the DOI."""
return f"https://doi.org/{self.doi}"
class PublicationEntry(EntryWithDate, PublicationEntryBase):
"""This class is the data model of `PublicationEntry`."""
pass
class EntryBase(EntryWithDate):
"""This class is the parent class of some of the entry types. It is being used
because some of the entry types have common fields like dates, highlights, location,
etc.
"""
location: Optional[str] = pydantic.Field(
default=None,
title="Location",
description="The location of the event.",
examples=["Istanbul, Türkiye"],
)
start_date: Optional[int | RenderCVDate] = pydantic.Field(
default=None,
title="Start Date",
description=(
"The start date of the event in YYYY-MM-DD, YYYY-MM, or YYYY format."
),
examples=["2020-09-24"],
)
end_date: Optional[Literal["present"] | int | RenderCVDate] = pydantic.Field(
default=None,
title="End Date",
description=(
"The end date of the event in YYYY-MM-DD, YYYY-MM, or YYYY format. If the"
' event is still ongoing, then type "present" or provide only the'
" start_date."
),
examples=["2020-09-24", "present"],
)
highlights: Optional[list[str]] = pydantic.Field(
default=None,
title="Highlights",
description="The highlights of the event as a list of strings.",
examples=["Did this.", "Did that."],
)
@pydantic.field_validator("start_date", "end_date", mode="before")
@classmethod
def check_and_parse_dates(
cls,
date: Optional[Literal["present"] | int | RenderCVDate],
) -> Optional[Literal["present"] | int | RenderCVDate]:
date_is_provided = date is not None
if date_is_provided:
if isinstance(date, Date):
# Pydantic parses YYYY-MM-DD dates as datetime.date objects. We need to
# convert them to strings because that's how RenderCV uses them.
date = date.isoformat()
elif date != "present":
# Validate the date:
get_date_object(date)
return date
@pydantic.model_validator(
mode="after",
)
def check_and_adjust_dates(self) -> "EntryBase":
"""
Check if the dates are provided correctly and do the necessary adjustments.
"""
date_is_provided = self.date is not None
start_date_is_provided = self.start_date is not None
end_date_is_provided = self.end_date is not None
if date_is_provided:
# If only date is provided, ignore start_date and end_date:
self.start_date = None
self.end_date = None
elif not start_date_is_provided and end_date_is_provided:
# If only end_date is provided, assume it is a one-day event and act like
# only the date is provided:
self.date = self.end_date
self.start_date = None
self.end_date = None
elif start_date_is_provided:
start_date = get_date_object(self.start_date)
if not end_date_is_provided:
# If only start_date is provided, assume it is an ongoing event, i.e.,
# the end_date is present:
self.end_date = "present"
end_date = Date.today()
else:
end_date = get_date_object(self.end_date)
if start_date > end_date:
raise ValueError(
'"start_date" can not be after "end_date"!',
"start_date", # this is the location of the error
str(start_date), # this is value of the error
)
return self
@functools.cached_property
def date_string(self) -> str:
"""
Return a date string based on the `date`, `start_date`, and `end_date` fields.
Example:
```python
entry = dm.EntryBase(start_date="2020-10-11", end_date="2021-04-04").date_string
```
will return:
`#!python "Nov. 2020 to Apr. 2021"`
"""
date_is_provided = self.date is not None
start_date_is_provided = self.start_date is not None
end_date_is_provided = self.end_date is not None
if date_is_provided:
date_string = super().date_string
elif start_date_is_provided and end_date_is_provided:
if isinstance(self.start_date, int):
# Then it means only the year is provided
start_date = str(self.start_date)
else:
# Then it means start_date is either in YYYY-MM-DD or YYYY-MM format
date_object = get_date_object(self.start_date)
start_date = format_date(date_object)
if self.end_date == "present":
end_date = locale_catalog["present"]
elif isinstance(self.end_date, int):
# Then it means only the year is provided
end_date = str(self.end_date)
else:
# Then it means end_date is either in YYYY-MM-DD or YYYY-MM format
date_object = get_date_object(self.end_date)
end_date = format_date(date_object)
date_string = f"{start_date} {locale_catalog['to']} {end_date}"
else:
# Neither date, start_date, nor end_date is provided, so return an empty
# string:
date_string = ""
return date_string
@functools.cached_property
def date_string_only_years(self) -> str:
"""
Return a date string that only contains years based on the `date`, `start_date`,
and `end_date` fields.
Example:
```python
entry = dm.EntryBase(start_date="2020-10-11", end_date="2021-04-04").date_string
```
will return:
`#!python "2020 to 2021"`
"""
date_is_provided = self.date is not None
start_date_is_provided = self.start_date is not None
end_date_is_provided = self.end_date is not None
if date_is_provided:
try:
date_object = get_date_object(self.date)
date_string = str(date_object.year)
except ValueError:
# Then it is a custom date string (e.g., "My Custom Date")
date_string = str(self.date)
elif start_date_is_provided and end_date_is_provided:
if isinstance(self.start_date, int):
# Then it means only the year is provided
start_date = str(self.start_date)
else:
# Then it means start_date is either in YYYY-MM-DD or YYYY-MM format
date_object = get_date_object(self.start_date)
start_date = date_object.year
if self.end_date == "present":
end_date = "present"
elif isinstance(self.end_date, int):
# Then it means only the year is provided
end_date = str(self.end_date)
else:
# Then it means end_date is either in YYYY-MM-DD or YYYY-MM format
date_object = get_date_object(self.end_date)
end_date = date_object.year
date_string = f"{start_date} {locale_catalog['to']} {end_date}"
else:
# Neither date, start_date, nor end_date is provided, so return an empty
# string:
date_string = ""
return date_string
@functools.cached_property
def time_span_string(self) -> str:
"""
Return a time span string based on the `date`, `start_date`, and `end_date`
fields.
Example:
```python
entry = dm.EntryBase(start_date="2020-01-01", end_date="2020-04-20").time_span
```
will return:
`#!python "4 months"`
"""
date_is_provided = self.date is not None
start_date_is_provided = self.start_date is not None
end_date_is_provided = self.end_date is not None
if date_is_provided:
# If only the date is provided, the time span is irrelevant. So, return an
# empty string.
return ""
elif not start_date_is_provided and not end_date_is_provided:
# If neither start_date nor end_date is provided, return an empty string.
return ""
elif isinstance(self.start_date, int) or isinstance(self.end_date, int):
# Then it means one of the dates is year, so time span cannot be more
# specific than years.
start_year = get_date_object(self.start_date).year # type: ignore
end_year = get_date_object(self.end_date).year # type: ignore
time_span_in_years = end_year - start_year
if time_span_in_years < 2:
time_span_string = "1 year"
else:
time_span_string = f"{time_span_in_years} years"
return time_span_string
else:
# Then it means both start_date and end_date are in YYYY-MM-DD or YYYY-MM
# format.
end_date = get_date_object(self.end_date) # type: ignore
start_date = get_date_object(self.start_date) # type: ignore
# calculate the number of days between start_date and end_date:
timespan_in_days = (end_date - start_date).days # type: ignore
# calculate the number of years between start_date and end_date:
how_many_years = timespan_in_days // 365
if how_many_years == 0:
how_many_years_string = None
elif how_many_years == 1:
how_many_years_string = f"1 {locale_catalog['year']}"
else:
how_many_years_string = f"{how_many_years} {locale_catalog['years']}"
# calculate the number of months between start_date and end_date:
how_many_months = round((timespan_in_days % 365) / 30)
if how_many_months <= 1:
how_many_months_string = f"1 {locale_catalog['month']}"
else:
how_many_months_string = f"{how_many_months} {locale_catalog['months']}"
# combine howManyYearsString and howManyMonthsString:
if how_many_years_string is None:
time_span_string = how_many_months_string
else:
time_span_string = f"{how_many_years_string} {how_many_months_string}"
return time_span_string
class NormalEntryBase(RenderCVBaseModel):
name: str = pydantic.Field(
title="Name",
description="The name of the NormalEntry.",
)
# The following class is to make sure NormalEntryBase keys comes first,
# then the keys of the EntryBase class. The only way to achieve this in Pydantic is
# to do this.
class NormalEntry(EntryBase, NormalEntryBase):
"""This class is the data model of `NormalEntry`."""
pass
class ExperienceEntryBase(RenderCVBaseModel):
company: str = pydantic.Field(
title="Company",
description="The company name.",
)
position: str = pydantic.Field(
title="Position",
description="The position.",
)
# The following class is to make sure ExperienceEntryBase keys comes first,
# then the keys of the EntryBase class. The only way to achieve this in Pydantic is
# to do this.
class ExperienceEntry(EntryBase, ExperienceEntryBase):
"""This class is the data model of `ExperienceEntry`."""
pass
class EducationEntryBase(RenderCVBaseModel):
institution: str = pydantic.Field(
title="Institution",
description="The institution name.",
)
area: str = pydantic.Field(
title="Area",
description="The area of study.",
)
degree: Optional[str] = pydantic.Field(
default=None,
title="Degree",
description="The type of the degree.",
examples=["BS", "BA", "PhD", "MS"],
)
# The following class is to make sure EducationEntryBase keys comes first,
# then the keys of the EntryBase class. The only way to achieve this in Pydantic is
# to do this.
class EducationEntry(EntryBase, EducationEntryBase):
"""This class is the data model of `EducationEntry`."""
pass
# Create a custom type called Entry and ListOfEntries:
Entry = (
OneLineEntry
| NormalEntry
| ExperienceEntry
| EducationEntry
| PublicationEntry
| BulletEntry
| str
)
ListOfEntries = (
list[OneLineEntry]
| list[NormalEntry]
| list[ExperienceEntry]
| list[EducationEntry]
| list[PublicationEntry]
| list[BulletEntry]
| list[str]
)
entry_types = Entry.__args__[:-1] # a tuple of all the entry types except str
entry_type_names = [entry_type.__name__ for entry_type in entry_types] + ["TextEntry"]
# ======================================================================================
# Section models: ======================================================================
# ======================================================================================
# Each section data model has a field called `entry_type` and a field called `entries`.
# Since the same pydantic.Field object is used in all of the section models, it is
# defined as a separate variable and used in all of the section models:
entry_type_field_of_section_model = pydantic.Field(
title="Entry Type",
description="The type of the entries in the section.",
)
entries_field_of_section_model = pydantic.Field(
title="Entries",
description="The entries of the section. The format depends on the entry type.",
)
class SectionBase(RenderCVBaseModel):
"""This class is the parent class of all the section types. It is being used
because all of the section types have a common field called `title`.
"""
# Title is excluded from the JSON schema because this will be written by RenderCV
# depending on the key in the input file.
title: Optional[str] = pydantic.Field(default=None, exclude=True)
entry_type: str
entries: list[Entry]
def create_a_section_model(entry_type: Type[Entry]) -> Type[SectionBase]:
"""Create a section model based on the entry type. See [Pydantic's documentation
about dynamic model
creation](https://pydantic-docs.helpmanual.io/usage/models/#dynamic-model-creation)
for more information.
Args:
entry_type (Type[Entry]): The entry type to create the section model.
Returns:
Type[SectionBase]: The section model.
"""
if entry_type == str:
model_name = "SectionWithTextEntries"
entry_type_name = "TextEntry"
else:
model_name = "SectionWith" + entry_type.__name__.replace("Entry", "Entries")
entry_type_name = entry_type.__name__
SectionModel = pydantic.create_model(
model_name,
entry_type=(Literal[entry_type_name], ...), # type: ignore
entries=(list[entry_type], ...),
__base__=SectionBase,
)
return SectionModel
def get_entry_and_section_type(
entry: dict[str, Any] | Entry,
) -> tuple[
str,
Type[SectionBase],
]:
"""Determine the entry and section type based on the entry.
Args:
entry: The entry to determine the type.
Returns:
tuple[str, Type[Section]]: The entry type and the section type.
"""
# Get class attributes of EntryBase class:
common_attributes = set(EntryBase.model_fields.keys())
if isinstance(entry, dict):
entry_type = None # the entry type is not determined yet
for EntryType in entry_types:
characteristic_entry_attributes = (
set(EntryType.model_fields.keys()) - common_attributes
)
# If at least one of the characteristic_entry_attributes is in the entry,
# then it means the entry is of this type:
if characteristic_entry_attributes & set(entry.keys()):
entry_type = EntryType.__name__
section_type = create_a_section_model(EntryType)
break
if entry_type is None:
raise ValueError("The entry is not provided correctly.")
elif isinstance(entry, str):
# Then it is a TextEntry
entry_type = "TextEntry"
section_type = create_a_section_model(str)
else:
# Then the entry is already initialized with a data model:
entry_type = entry.__class__.__name__
section_type = create_a_section_model(entry.__class__)
return entry_type, section_type
def validate_section_input(
sections_input: SectionBase | list[Any],
) -> SectionBase | list[Any]:
"""Validate a `SectionInput` object and raise an error if it is not valid.
Sections input is very complex. It is either a `Section` object or a list of
entries. Since there are multiple entry types, it is not possible to validate it
directly. This function looks at the entry list's first element and determines the
section's entry type based on the first element. Then, it validates the rest of the
list based on the determined entry type. If it is a `Section` object, then it
validates it directly.
Args:
sections_input (SectionBase | list[Any]): The sections input to validate.
Returns:
SectionBase | list[Any]: The validated sections input.
"""
if isinstance(sections_input, list):
# find the entry type based on the first identifiable entry:
entry_type = None
section_type = None
for entry in sections_input:
try:
entry_type, section_type = get_entry_and_section_type(entry)
break
except ValueError:
pass
if entry_type is None or section_type is None:
raise ValueError(
"RenderCV couldn't match this section with any entry type! Please check"
" the entries and make sure they are provided correctly.",
"", # this is the location of the error
"", # this is value of the error
)
test_section = {
"title": "Test Section",
"entry_type": entry_type,
"entries": sections_input,
}
try:
section_type.model_validate(
test_section,
context={"section": "test"},
)
except pydantic.ValidationError as e:
new_error = ValueError(
"There are problems with the entries. RenderCV detected the entry type"
f" of this section to be {entry_type}! The problems are shown below.",
"", # this is the location of the error
"", # this is value of the error
)
raise new_error from e
return sections_input
# Create a custom type called SectionInput so that it can be validated with
# `validate_section_input` function.
SectionInput = Annotated[
ListOfEntries,
pydantic.BeforeValidator(validate_section_input),
]
# ======================================================================================
# Full RenderCV data models: ===========================================================
# ======================================================================================
class SocialNetwork(RenderCVBaseModel):
"""This class is the data model of a social network."""
network: Literal[
"LinkedIn", "GitHub", "Instagram", "Orcid", "Mastodon", "Twitter"
] = pydantic.Field(
title="Social Network",
description="The social network name.",
)
username: str = pydantic.Field(
title="Username",
description="The username of the social network. The link will be generated.",
)
@pydantic.field_validator("username")
@classmethod
def check_username(cls, username: str, info: pydantic.ValidationInfo) -> str:
"""Check if the username is provided correctly."""
network = info.data["network"]
if network == "Mastodon":
if not username.startswith("@"):
raise ValueError("Mastodon username should start with '@'!")
if username.count("@") != 2:
raise ValueError("Mastodon username should contain two '@'!")
return username
@pydantic.model_validator(mode="after") # type: ignore
def check_url(self) -> "SocialNetwork":
"""Validate the URLs of the social networks."""
url = self.url
url_validator.validate_strings(url)
return self
@functools.cached_property
def url(self) -> str:
"""Return the URL of the social network."""
if self.network == "Mastodon":
# split domain and username
dummy, username, domain = self.username.split("@")
url = f"https://{domain}/@{username}"
else:
url_dictionary = {
"LinkedIn": "https://linkedin.com/in/",
"GitHub": "https://github.com/",
"Instagram": "https://instagram.com/",
"Orcid": "https://orcid.org/",
"Twitter": "https://twitter.com/",
}
url = url_dictionary[self.network] + self.username
return url
class CurriculumVitae(RenderCVBaseModel):
"""This class is the data model of the CV."""
name: Optional[str] = pydantic.Field(
default=None,
title="Name",
description="The name of the person.",
)
label: Optional[str] = pydantic.Field(
default=None,
title="Label",
description="The label of the person.",
)
location: Optional[str] = pydantic.Field(
default=None,
title="Location",
description="The location of the person.",
)
email: Optional[pydantic.EmailStr] = pydantic.Field(
default=None,
title="Email",
description="The email of the person.",
)
phone: Optional[pydantic_phone_numbers.PhoneNumber] = pydantic.Field(
default=None,
title="Phone",
description="The phone number of the person.",
)
website: Optional[pydantic.HttpUrl] = pydantic.Field(
default=None,
title="Website",
description="The website of the person.",
)
social_networks: Optional[list[SocialNetwork]] = pydantic.Field(
default=None,
title="Social Networks",
description="The social networks of the person.",
)
sections_input: Optional[dict[str, SectionInput]] = pydantic.Field(
default=None,
title="Sections",
description="The sections of the CV.",
alias="sections",
)
@functools.cached_property
def connections(self) -> list[dict[str, str]]:
"""Return all the connections of the person."""
connections: list[dict[str, str]] = []
if self.location is not None:
connections.append(
{
"latex_icon": "\\faMapMarker*",
"url": None,
"clean_url": None,
"placeholder": self.location,
}
)
if self.email is not None:
connections.append(
{
"latex_icon": "\\faEnvelope[regular]",
"url": f"mailto:{self.email}",
"clean_url": self.email,
"placeholder": self.email,
}
)
if self.phone is not None:
phone_placeholder = self.phone.replace("tel:", "").replace("-", " ")
connections.append(
{
"latex_icon": "\\faPhone*",
"url": f"{self.phone}",
"clean_url": phone_placeholder,
"placeholder": phone_placeholder,
}
)
if self.website is not None:
website_placeholder = str(self.website).replace("https://", "").rstrip("/")
connections.append(
{
"latex_icon": "\\faLink",
"url": self.website,
"clean_url": website_placeholder,
"placeholder": website_placeholder,
}
)
if self.social_networks is not None:
icon_dictionary = {
"LinkedIn": "\\faLinkedinIn",
"GitHub": "\\faGithub",
"Instagram": "\\faInstagram",
"Mastodon": "\\faMastodon",
"Orcid": "\\faOrcid",
"Twitter": "\\faTwitter",
}
for social_network in self.social_networks:
clean_url = social_network.url.replace("https://", "").rstrip("/")
connections.append(
{
"latex_icon": icon_dictionary[social_network.network],
"url": social_network.url,
"clean_url": clean_url,
"placeholder": social_network.username,
}
)
return connections
@functools.cached_property
def sections(self) -> list[SectionBase]:
"""Return all the sections of the CV with their titles."""
sections: list[SectionBase] = []
if self.sections_input is not None:
for title, section_or_entries in self.sections_input.items():
title = title.replace("_", " ").title()
entry_type, section_type = get_entry_and_section_type(
section_or_entries[0]
)
section = section_type(
title=title,
entry_type=entry_type, # type: ignore
entries=section_or_entries, # type: ignore
)
sections.append(section)
return sections
class LocaleCatalog(RenderCVBaseModel):
"""This class is the data model of the locale catalog. The values of each field
updates the `locale_catalog` dictionary.
"""
month: Optional[str] = pydantic.Field(
default=None,
title='Translation of "Month"',
description='Translation of the word "month" in the locale.',
)
months: Optional[str] = pydantic.Field(
default=None,
title='Translation of "Months"',
description='Translation of the word "months" in the locale.',
)
year: Optional[str] = pydantic.Field(
default=None,
title='Translation of "Year"',
description='Translation of the word "year" in the locale.',
)
years: Optional[str] = pydantic.Field(
default=None,
title='Translation of "Years"',
description='Translation of the word "years" in the locale.',
)
present: Optional[str] = pydantic.Field(
default=None,
title='Translation of "Present"',
description='Translation of the word "present" in the locale.',
)
to: Optional[str] = pydantic.Field(
default=None,
title='Translation of "To"',
description='Translation of the word "to" in the locale.',
)
abbreviations_for_months: Optional[
Annotated[list[str], at.Len(min_length=12, max_length=12)]
] = pydantic.Field(
default=None,
title="Abbreviations of Months",
description="Abbreviations of the months in the locale.",
)
@pydantic.field_validator(
"month", "months", "year", "years", "present", "abbreviations_for_months", "to"
)
@classmethod
def update_translations(cls, value: str, info: pydantic.ValidationInfo) -> str:
"""Update the `locale_catalog` dictionary with the provided translations."""
if value:
locale_catalog[info.field_name] = value
return value
# ======================================================================================
# ======================================================================================
# ======================================================================================
# Create a custom type called Design:
# It is a union of all the design options and the correct design option is determined by
# the theme field, thanks Pydantic's discriminator feature.
# See https://docs.pydantic.dev/2.5/concepts/fields/#discriminator for more information
# about discriminators.
RenderCVDesign = Annotated[
ClassicThemeOptions
| ModerncvThemeOptions
| Sb2novThemeOptions
| EngineeringresumesThemeOptions,
pydantic.Field(discriminator="theme"),
]
rendercv_design_validator = pydantic.TypeAdapter(RenderCVDesign)
available_themes = ["classic", "moderncv", "sb2nov", "engineeringresumes"]
class RenderCVDataModel(RenderCVBaseModel):
"""This class binds both the CV and the design information together."""
cv: CurriculumVitae = pydantic.Field(
title="Curriculum Vitae",
description="The data of the CV.",
)
design: pydantic.json_schema.SkipJsonSchema[Any] | RenderCVDesign = pydantic.Field(
default=ClassicThemeOptions(theme="classic"),
title="Design",
description=(
"The design information of the CV. The default is the classic theme."
),
)
locale_catalog: Optional[LocaleCatalog] = pydantic.Field(
default=None,
title="Locale Catalog",
description=(
"The locale catalog of the CV to allow the support of multiple languages."
),
)
@pydantic.field_validator("design", mode="before")
@classmethod
def initialize_if_custom_theme_is_used(
cls, design: RenderCVDesign | Any
) -> RenderCVDesign | Any:
"""Initialize the custom theme if it is used and validate it. Otherwise, return
the built-in theme."""
# `get_args` for an Annotated object returns the arguments when Annotated is
# used. The first argument is actually the union of the types, so we need to
# access the first argument to use isinstance function.
theme_data_model_types = get_args(RenderCVDesign)[0]
if isinstance(design, theme_data_model_types):
# then it means RenderCVDataModel is already initialized with a design, so
# return it as is:
return design
elif design["theme"] in available_themes: # type: ignore
# then it means it's a built-in theme, but it is not initialized (validated)
# yet. So, validate and return it:
return rendercv_design_validator.validate_python(design)
else:
# then it means it is a custom theme, so initialize and validate it:
theme_name: str = str(design["theme"])
# check if the theme name is valid:
if not theme_name.isalpha():
raise ValueError(
"The custom theme name should contain only letters.",
"theme", # this is the location of the error
theme_name, # this is value of the error
)
# then it is a custom theme
custom_theme_folder = pathlib.Path(theme_name)
# check if the custom theme folder exists:
if not custom_theme_folder.exists():
raise ValueError(
f"The custom theme folder `{custom_theme_folder}` does not exist."
" It should be in the working directory as the input file.",
"", # this is the location of the error
theme_name, # this is value of the error
)
# check if all the necessary files are provided in the custom theme folder:
required_entry_files = [
entry_type_name + ".j2.tex" for entry_type_name in entry_type_names
]
required_files = [
"SectionBeginning.j2.tex", # section beginning template
"SectionEnding.j2.tex", # section ending template
"Preamble.j2.tex", # preamble template
"Header.j2.tex", # header template
] + required_entry_files
for file in required_files:
file_path = custom_theme_folder / file
if not file_path.exists():
raise ValueError(
f"You provided a custom theme, but the file `{file}` is not"
f" found in the folder `{custom_theme_folder}`.",
"", # this is the location of the error
theme_name, # this is value of the error
)
# import __init__.py file from the custom theme folder if it exists:
path_to_init_file = pathlib.Path(f"{theme_name}/__init__.py")
if path_to_init_file.exists():
spec = importlib.util.spec_from_file_location(
"theme",
path_to_init_file,
)
theme_module = importlib.util.module_from_spec(spec)
try:
spec.loader.exec_module(theme_module) # type: ignore
except SyntaxError or ImportError:
raise ValueError(
f"The custom theme {theme_name}'s __init__.py file is not"
" valid. Please check the file and try again.",
)
ThemeDataModel = getattr(
theme_module, f"{theme_name.capitalize()}ThemeOptions" # type: ignore
)
# initialize and validate the custom theme data model:
theme_data_model = ThemeDataModel(**design)
else:
# Then it means there is no __init__.py file in the custom theme folder.
# So, create a dummy data model and use that instead.
class ThemeOptionsAreNotProvided(RenderCVBaseModel):
theme: str = theme_name
theme_data_model = ThemeOptionsAreNotProvided(theme=theme_name)
return theme_data_model
def set_or_update_a_value(
data_model: pydantic.BaseModel | dict | list,
key: str,
value: str,
sub_model: pydantic.BaseModel | dict | list = None,
):
"""Set or update a value in a data model for a specific key. For example, a key can
be `cv.sections.education.3.institution` and the value can be "Bogazici University".
Args:
data_model (pydantic.BaseModel | dict | list): The data model to set or update
the value.
key (str): The key to set or update the value.
value (Any): The value to set or update.
sub_model (pydantic.BaseModel | dict | list, optional): The sub model to set or
update the value. This is used for recursive calls. When the value is set
to a sub model, the original data model is validated. Defaults to None.
"""
# recursively call this function until the last key is reached:
# rename `sections` with `sections_input` since the key is `sections` is an alias:
key = key.replace("sections.", "sections_input.")
keys = key.split(".")
if sub_model is not None:
model = sub_model
else:
model = data_model
if len(keys) == 1:
# set the value:
if value.startswith("{") and value.endswith("}"):
# allow users to assign dictionaries:
value = eval(value)
elif value.startswith("[") and value.endswith("]"):
# allow users to assign lists:
value = eval(value)
if isinstance(model, pydantic.BaseModel):
setattr(model, key, value)
elif isinstance(model, dict):
model[key] = value
elif isinstance(model, list):
model[int(key)] = value
else:
raise ValueError(
"The data model should be either a Pydantic data model, dictionary, or"
" list.",
)
data_model = type(data_model).model_validate(
(data_model.model_dump(by_alias=True))
)
return data_model
else:
# get the first key and call the function with remaining keys:
first_key = keys[0]
key = ".".join(keys[1:])
if isinstance(model, pydantic.BaseModel):
sub_model = getattr(model, first_key)
elif isinstance(model, dict):
sub_model = model[first_key]
elif isinstance(model, list):
sub_model = model[int(first_key)]
else:
raise ValueError(
"The data model should be either a Pydantic data model, dictionary, or"
" list.",
)
set_or_update_a_value(data_model, key, value, sub_model)
def read_input_file(
file_path_or_contents: pathlib.Path | str,
) -> RenderCVDataModel:
"""Read the input file and return two instances of
[RenderCVDataModel][rendercv.data_models.RenderCVDataModel]. The first instance is
the data model with $\\LaTeX$ strings and the second instance is the data model with
markdown strings.
Args:
file_path_or_contents (str): The path to the input file or the contents of the
input file as a string.
Returns:
RenderCVDataModel: The data models with $\\LaTeX$ and markdown strings.
"""
if isinstance(file_path_or_contents, pathlib.Path):
# check if the file exists:
if not file_path_or_contents.exists():
raise FileNotFoundError(
f"The input file [magenta]{file_path_or_contents}[/magenta] doesn't"
" exist!"
)
# check the file extension:
accepted_extensions = [".yaml", ".yml", ".json", ".json5"]
if file_path_or_contents.suffix not in accepted_extensions:
user_friendly_accepted_extensions = [
f"[green]{ext}[/green]" for ext in accepted_extensions
]
user_friendly_accepted_extensions = ", ".join(
user_friendly_accepted_extensions
)
raise ValueError(
"The input file should have one of the following extensions:"
f" {user_friendly_accepted_extensions}. The input file is"
f" [magenta]{file_path_or_contents}[/magenta]."
)
file_content = file_path_or_contents.read_text(encoding="utf-8")
else:
file_content = file_path_or_contents
input_as_dictionary: dict[str, Any] = ruamel.yaml.YAML().load(file_content) # type: ignore
# validate the parsed dictionary by creating an instance of RenderCVDataModel:
rendercv_data_model = RenderCVDataModel(**input_as_dictionary)
return rendercv_data_model
def get_a_sample_data_model(
name: str = "John Doe", theme: str = "classic"
) -> RenderCVDataModel:
"""Return a sample data model for new users to start with.
Args:
name (str, optional): The name of the person. Defaults to "John Doe".
Returns:
RenderCVDataModel: A sample data model.
"""
# check if the theme is valid:
if theme not in available_themes:
available_themes_string = ", ".join(available_themes)
raise ValueError(
f"The theme should be one of the following: {available_themes_string}!"
f' The provided theme is "{theme}".'
)
name = name.encode().decode("unicode-escape")
sections = {
"this_is_a_section_title": [
BulletEntry(
bullet=(
"[RenderCV](https://github.com/sinaatalay/rendercv) is a LaTeX"
" CV/resume framework. It allows you to create a high-quality CV as"
" a PDF from a YAML file with **full Markdown syntax support** and"
" **complete control over the LaTeX code**."
)
),
BulletEntry(
bullet=(
"Each section title is arbitrary, and each section contains a list"
" of entries."
)
),
BulletEntry(
bullet=(
"There are seven different entry types:"
" [BulletEntry](https://docs.rendercv.com/user_guide/structure_of_the_yaml_input_file/\\#bullet-entry)"
" (this"
" section contains bullet entries),"
" [TextEntry](https://docs.rendercv.com/user_guide/structure_of_the_yaml_input_file/\\#text-entry),"
" [EducationEntry](https://docs.rendercv.com/user_guide/structure_of_the_yaml_input_file/\\#education-entry),"
" [ExperienceEntry](https://docs.rendercv.com/user_guide/structure_of_the_yaml_input_file/\\#experience-entry),"
" [NormalEntry](https://docs.rendercv.com/user_guide/structure_of_the_yaml_input_file/\\#normal-entry),"
" [PublicationEntry](https://docs.rendercv.com/user_guide/structure_of_the_yaml_input_file/\\#publication-entry),"
" and [OneLineEntry](https://docs.rendercv.com/user_guide/structure_of_the_yaml_input_file/\\#one-line-entry)."
)
),
BulletEntry(
bullet=(
"Select a section title, pick an entry type, and start writing your"
" section!"
)
),
BulletEntry(
bullet=(
"You can include some math as well:"
" $\\mathcal{O}(n^2)\\vec{\\omega}$"
)
),
BulletEntry(
bullet=(
"[Here](https://docs.rendercv.com/user_guide/), you can find a"
" comprehensive user guide that covers the data model (YAML"
" structure) and command-line interface (CLI) in greater detail."
)
),
],
"your_education_section": [
EducationEntry(
institution="University of Example",
area="Mechanical Engineering",
degree="PhD",
start_date="2017-09",
end_date="2021-06",
highlights=[
'**Thesis:** "This is an EducationEntry"',
],
),
EducationEntry(
institution="University of Example",
area="Mechanical Engineering",
degree="BS",
start_date="2012-01",
end_date="2017-06",
highlights=[
(
"**GPA:** 3.9/4.0 ([Transcript](https://example.com), this is a"
" Markdown link)"
),
(
"**Relevant Courses:** Advanced LaTeX, Python for Document"
" Automation"
),
],
),
],
"experience": [
ExperienceEntry(
company="RenderCV",
position="Lead Developer",
start_date="2020-05",
end_date="present",
location="Remote",
highlights=[
"This is an *ExperienceEntry*.",
(
"Implemented Markdown support to enhance text formatting"
" capabilities in CVs."
),
"Led a team of five in the design of new CV templates.",
],
),
ExperienceEntry(
company="GitHub",
position="Developer",
date="A Custom *Date*",
location="San Francisco, CA, USA",
highlights=[
"This is another *ExperienceEntry*.",
"Used technologies: Python, JavaScript",
],
),
],
"personal_projects": [
NormalEntry(
name="Project Name",
location="[Github Repository](https://github.com)",
highlights=[
"This is a *NormalEntry*.",
"You don't have to provide all the fields in an entry!",
],
),
NormalEntry(
name="Another Project Name",
location="Istanbul",
date="Fall 2024",
highlights=["This is another *NormalEntry* with a custom date."],
),
],
"additional_skills_and_awards": [
OneLineEntry(
label="This is",
details="a *OneLineEntry*",
),
OneLineEntry(
label="Languages",
details="English, Turkish",
),
],
"publications": [
PublicationEntry(
title=(
"Magneto-Thermal Thin Shell Approximation for 3D Finite Element"
" Analysis of No-Insulation Coils"
),
authors=[
"Albert Smith",
name,
"Jane Derry",
"Harry Tom",
"Frodo Baggins",
],
date="2004-01",
doi="10.1109/TASC.2023.3340648",
)
],
"anything_else": [
"This is a *TextEntry*. You can write anything here!",
(
"The source code of RenderCV is well-commented and documented. Reading"
" the source code might be fun as the software structure is explained"
" with docstrings and comments."
),
],
}
cv = CurriculumVitae(
name=name,
location="Your Location",
email="youremail@yourdomain.com",
phone="+905419999999", # type: ignore
website="https://yourwebsite.com", # type: ignore
social_networks=[
SocialNetwork(network="LinkedIn", username="yourusername"),
SocialNetwork(network="GitHub", username="yourusername"),
],
sections=sections, # type: ignore
)
if theme == "classic":
design = ClassicThemeOptions(theme="classic", show_timespan_in=["Experience"])
else:
design = rendercv_design_validator.validate_python({"theme": theme}) # type: ignore
return RenderCVDataModel(cv=cv, design=design)
def generate_json_schema() -> dict[str, Any]:
"""Generate the JSON schema of RenderCV.
JSON schema is generated for the users to make it easier for them to write the input
file. The JSON Schema of RenderCV is saved in the `docs` directory of the repository
and distributed to the users with the
[JSON Schema Store](https://www.schemastore.org/).
Returns:
dict: The JSON schema of RenderCV.
"""
# def loop_through_pro
class RenderCVSchemaGenerator(pydantic.json_schema.GenerateJsonSchema):
def generate(self, schema, mode="validation"): # type: ignore
json_schema = super().generate(schema, mode=mode)
# Basic information about the schema:
json_schema["title"] = "RenderCV"
json_schema["description"] = "RenderCV data model."
json_schema["$id"] = (
"https://raw.githubusercontent.com/sinaatalay/rendercv/main/schema.json"
)
json_schema["$schema"] = "http://json-schema.org/draft-07/schema#"
# Loop through $defs and remove docstring descriptions and fix optional
# fields
for object_name, value in json_schema["$defs"].items():
# Don't allow additional properties
value["additionalProperties"] = False
# If a type is optional, then Pydantic sets the type to a list of two
# types, one of which is null. The null type can be removed since we
# already have the required field. Moreover, we would like to warn
# users if they provide null values. They can remove the fields if they
# don't want to provide them.
null_type_dict = {}
null_type_dict["type"] = "null"
for field_name, field in value["properties"].items():
if "anyOf" in field:
if (
len(field["anyOf"]) == 2
and null_type_dict in field["anyOf"]
):
field["oneOf"] = [field["anyOf"][0]]
del field["anyOf"]
# for sections field of CurriculumVitae:
if "additionalProperties" in field["oneOf"][0]:
field["oneOf"][0]["additionalProperties"]["oneOf"] = (
field["oneOf"][0]["additionalProperties"]["anyOf"]
)
del field["oneOf"][0]["additionalProperties"]["anyOf"]
else:
field["oneOf"] = field["anyOf"]
del field["anyOf"]
# In date field, we both accept normal strings and Date objects. They
# are both strings, therefore, if user provides a Date object, then
# JSON schema will complain that it matches two different types.
# Remember that all of the anyOfs are changed to oneOfs. Only one of
# the types can be matched. Therefore, we remove the first type, which
# is the string with the YYYY-MM-DD format.
if (
"date" in value["properties"]
and "oneOf" in value["properties"]["date"]
):
del value["properties"]["date"]["oneOf"][0]
return json_schema
schema = RenderCVDataModel.model_json_schema(
schema_generator=RenderCVSchemaGenerator
)
return schema
def generate_json_schema_file(json_schema_path: pathlib.Path):
"""Generate the JSON schema of RenderCV and save it to a file.
Args:
json_schema_path (pathlib.Path): The path to save the JSON schema.
"""
schema = generate_json_schema()
schema_json = json.dumps(schema, indent=2)
json_schema_path.write_text(schema_json)