mirror of https://github.com/eyhc1/rendercv.git
1138 lines
42 KiB
Python
1138 lines
42 KiB
Python
"""
|
|
This module contains all the necessary classes to store CV data. These classes are called
|
|
data models. The YAML input file is transformed into instances of these classes (i.e.,
|
|
the input file is read) with the [`read_input_file`](#read_input_file) function.
|
|
RenderCV utilizes these instances to generate a LaTeX file which is then rendered into a
|
|
PDF file.
|
|
|
|
The data models are initialized with data validation to prevent unexpected bugs. During
|
|
the initialization, we ensure that everything is in the correct place and that the user
|
|
has provided a valid RenderCV input. This is achieved through the use of
|
|
[Pydantic](https://pypi.org/project/pydantic/).
|
|
"""
|
|
|
|
from datetime import date as Date
|
|
from typing import Literal, Any
|
|
from typing_extensions import Annotated, Optional
|
|
from functools import cached_property
|
|
from urllib.request import urlopen, HTTPError
|
|
import os
|
|
import json
|
|
import re
|
|
import ssl
|
|
import pathlib
|
|
|
|
import pydantic
|
|
import pydantic_extra_types.phone_numbers as pydantic_phone_numbers
|
|
import strictyaml
|
|
|
|
from .terminal_reporter import warning
|
|
from .themes.classic import ClassicThemeOptions
|
|
from .terminal_reporter import time_the_event_below
|
|
|
|
|
|
# Create a custom type called RenderCVDate that accepts only strings in YYYY-MM-DD or
|
|
# YYYY-MM format:
|
|
# This type is used to validate the date fields in the data.
|
|
# See https://docs.pydantic.dev/2.5/concepts/types/#custom-types for more information
|
|
# about custom types.
|
|
RenderCVDate = Annotated[
|
|
str,
|
|
pydantic.Field(pattern=r"\d{4}-\d{2}(-\d{2})?"),
|
|
]
|
|
|
|
|
|
def get_date_object(date: str | int) -> Date:
|
|
"""Parse a date string in YYYY-MM-DD, YYYY-MM, or YYYY format and return a
|
|
datetime.date object. This function is used throughout the validation process of the
|
|
data models.
|
|
|
|
Args:
|
|
date_string (str): The date string to parse.
|
|
Returns:
|
|
datetime.date: The parsed date.
|
|
"""
|
|
if isinstance(date, int):
|
|
date_object = Date.fromisoformat(f"{date}-01-01")
|
|
elif re.match(r"\d{4}-\d{2}-\d{2}", date):
|
|
# Then it is in YYYY-MM-DD format
|
|
date_object = Date.fromisoformat(date)
|
|
elif re.match(r"\d{4}-\d{2}", date):
|
|
# Then it is in YYYY-MM format
|
|
date_object = Date.fromisoformat(f"{date}-01")
|
|
elif re.match(r"\d{4}", date):
|
|
# Then it is in YYYY format
|
|
date_object = Date.fromisoformat(f"{date}-01-01")
|
|
elif date == "present":
|
|
date_object = Date.today()
|
|
else:
|
|
raise ValueError(
|
|
f'The date string "{date}" is not in YYYY-MM-DD, YYYY-MM, or YYYY format.'
|
|
)
|
|
|
|
return date_object
|
|
|
|
|
|
def format_date(date: Date) -> str:
|
|
"""Formats a `Date` object to a string in the following format: "Jan. 2021".
|
|
|
|
It uses month abbreviations, taken from
|
|
[Yale University Library](https://web.library.yale.edu/cataloging/months).
|
|
|
|
Example:
|
|
```python
|
|
format_date(Date(2024, 5, 1))
|
|
```
|
|
will return
|
|
|
|
`#!python "May 2024"`
|
|
|
|
Args:
|
|
date (Date): The date to format.
|
|
|
|
Returns:
|
|
str: The formatted date.
|
|
"""
|
|
# Month abbreviations,
|
|
# taken from: https://web.library.yale.edu/cataloging/months
|
|
abbreviations_of_months = [
|
|
"Jan.",
|
|
"Feb.",
|
|
"Mar.",
|
|
"Apr.",
|
|
"May",
|
|
"June",
|
|
"July",
|
|
"Aug.",
|
|
"Sept.",
|
|
"Oct.",
|
|
"Nov.",
|
|
"Dec.",
|
|
]
|
|
|
|
month = int(date.strftime("%m"))
|
|
month_abbreviation = abbreviations_of_months[month - 1]
|
|
year = date.strftime(format="%Y")
|
|
date_string = f"{month_abbreviation} {year}"
|
|
|
|
return date_string
|
|
|
|
|
|
class RenderCVBaseModel(pydantic.BaseModel):
|
|
"""This class is the parent class of all the data models in RenderCV. It has only
|
|
one difference from the default `pydantic.BaseModel`: It raises an error if an
|
|
unknown key is provided in the input file.
|
|
"""
|
|
|
|
model_config = pydantic.ConfigDict(extra="forbid")
|
|
|
|
|
|
# ======================================================================================
|
|
# Entry models: ========================================================================
|
|
# ======================================================================================
|
|
|
|
|
|
class EntryBase(RenderCVBaseModel):
|
|
"""This class is the parent class of some of the entry types. It is being used
|
|
because some of the entry types have common fields like dates, highlights, location,
|
|
etc.
|
|
"""
|
|
|
|
start_date: Optional[int | RenderCVDate] = pydantic.Field(
|
|
default=None,
|
|
title="Start Date",
|
|
description="The start date of the event in YYYY-MM-DD format.",
|
|
examples=["2020-09-24"],
|
|
)
|
|
end_date: Optional[Literal["present"] | int | RenderCVDate] = pydantic.Field(
|
|
default=None,
|
|
title="End Date",
|
|
description=(
|
|
"The end date of the event in YYYY-MM-DD format. If the event is still"
|
|
' ongoing, then the value should be "present".'
|
|
),
|
|
examples=["2020-09-24", "present"],
|
|
)
|
|
date: Optional[RenderCVDate | int | str] = pydantic.Field(
|
|
default=None,
|
|
title="Date",
|
|
description=(
|
|
"If the event is a one-day event, then this field should be filled in"
|
|
" YYYY-MM-DD format. If the event is a multi-day event, then the start date"
|
|
" and end date should be provided instead. All of them can't be provided at"
|
|
" the same time."
|
|
),
|
|
examples=["2020-09-24", "My Custom Date"],
|
|
)
|
|
highlights: Optional[list[str]] = pydantic.Field(
|
|
default=[],
|
|
title="Highlights",
|
|
description="The highlights of the event as a list of strings.",
|
|
examples=["Did this.", "Did that."],
|
|
)
|
|
location: Optional[str] = pydantic.Field(
|
|
default=None,
|
|
title="Location",
|
|
description="The location of the event.",
|
|
examples=["Istanbul, Turkey"],
|
|
)
|
|
url: Optional[pydantic.HttpUrl] = None
|
|
url_text_input: Optional[str] = pydantic.Field(default=None, alias="url_text")
|
|
|
|
@pydantic.model_validator(mode="after")
|
|
@classmethod
|
|
def check_dates(cls, model):
|
|
"""
|
|
Check if the dates are provided correctly and do the necessary adjustments.
|
|
"""
|
|
date_is_provided = False
|
|
start_date_is_provided = False
|
|
end_date_is_provided = False
|
|
if model.date is not None:
|
|
date_is_provided = True
|
|
if model.start_date is not None:
|
|
start_date_is_provided = True
|
|
if model.end_date is not None:
|
|
end_date_is_provided = True
|
|
|
|
if date_is_provided and start_date_is_provided and end_date_is_provided:
|
|
warning(
|
|
'"start_date", "end_date" and "date" are all provided in of the'
|
|
" entries. start_date and end_date will be ignored."
|
|
)
|
|
model.start_date = None
|
|
model.end_date = None
|
|
|
|
elif date_is_provided and start_date_is_provided and not end_date_is_provided:
|
|
warning(
|
|
'Both "date" and "start_date" is provided in of the entries.'
|
|
' "start_date" will be ignored.'
|
|
)
|
|
model.start_date = None
|
|
model.end_date = None
|
|
|
|
elif date_is_provided and end_date_is_provided and not start_date_is_provided:
|
|
warning(
|
|
'Both "date" and "end_date" is provided in of the entries. "end_date"'
|
|
" will be ignored."
|
|
)
|
|
model.start_date = None
|
|
model.end_date = None
|
|
|
|
elif start_date_is_provided and not end_date_is_provided:
|
|
warning(
|
|
'"start_date" is provided in of the entries, but "end_date" is not.'
|
|
' "end_date" will be set to "present".'
|
|
)
|
|
model.end_date = "present"
|
|
|
|
elif not start_date_is_provided and end_date_is_provided:
|
|
raise ValueError(
|
|
'"end_date" is provided in of the entries, but "start_date" is not.'
|
|
' "start_date" is required.'
|
|
)
|
|
|
|
if model.start_date is not None and model.end_date is not None:
|
|
end_date = get_date_object(model.end_date)
|
|
start_date = get_date_object(model.start_date)
|
|
|
|
if start_date > end_date:
|
|
raise ValueError(
|
|
'"start_date" can not be after "end_date". The start date is'
|
|
f" {start_date} and the end date is {end_date}."
|
|
)
|
|
elif end_date > Date.today():
|
|
raise ValueError(
|
|
f'"end_date" cannot be in the future. The end date is {end_date}.'
|
|
)
|
|
elif start_date > Date.today():
|
|
raise ValueError(
|
|
'"start_date" cannot be in the future. The start date is'
|
|
f" {start_date}."
|
|
)
|
|
|
|
return model
|
|
|
|
@pydantic.computed_field
|
|
@cached_property
|
|
def date_string(self) -> str:
|
|
"""
|
|
Return a date string based on the `date`, `start_date`, and `end_date` fields.
|
|
|
|
Example:
|
|
```python
|
|
entry = dm.EntryBase(start_date=2020-10-11, end_date=2021-04-04).date_string
|
|
```
|
|
will return:
|
|
`#!python "2020-10-11 to 2021-04-04"`
|
|
"""
|
|
if self.date is not None:
|
|
try:
|
|
date_object = get_date_object(self.date)
|
|
date_string = format_date(date_object)
|
|
except ValueError:
|
|
# Then it is a custom date string (e.g., "My Custom Date")
|
|
date_string = str(self.date)
|
|
|
|
elif self.start_date is not None and self.end_date is not None:
|
|
if isinstance(self.start_date, int):
|
|
# Then it means only the year is provided
|
|
start_date = str(self.start_date)
|
|
else:
|
|
# Then it means start_date is either in YYYY-MM-DD or YYYY-MM format
|
|
date_object = get_date_object(self.start_date)
|
|
start_date = format_date(date_object)
|
|
|
|
if self.end_date == "present":
|
|
end_date = "present"
|
|
elif isinstance(self.end_date, int):
|
|
# Then it means only the year is provided
|
|
end_date = str(self.end_date)
|
|
else:
|
|
# Then it means end_date is either in YYYY-MM-DD or YYYY-MM format
|
|
date_object = get_date_object(self.end_date)
|
|
end_date = format_date(date_object)
|
|
|
|
date_string = f"{start_date} to {end_date}"
|
|
|
|
else:
|
|
# Neither date, start_date, nor end_date is provided, so return an empty
|
|
# string:
|
|
date_string = ""
|
|
|
|
return date_string
|
|
|
|
@pydantic.computed_field
|
|
@cached_property
|
|
def time_span_string(self) -> str:
|
|
"""
|
|
Return a time span string based on the `date`, `start_date`, and `end_date`
|
|
fields.
|
|
|
|
Example:
|
|
```python
|
|
entry = dm.EntryBase(start_date=2020-01-01, end_date=2020-04-20).time_span
|
|
```
|
|
will return:
|
|
`#!python "4 months"`
|
|
"""
|
|
start_date = self.start_date
|
|
end_date = self.end_date
|
|
date = self.date
|
|
|
|
if date is not None or (start_date is None and end_date is None):
|
|
# If only the date is provided, the time span is irrelevant. So, return an
|
|
# empty string.
|
|
return ""
|
|
|
|
elif isinstance(start_date, int) or isinstance(end_date, int):
|
|
# Then it means one of the dates is year, so time span cannot be more
|
|
# specific than years.
|
|
start_year = get_date_object(start_date).year # type: ignore
|
|
end_year = get_date_object(end_date).year # type: ignore
|
|
|
|
time_span_in_years = end_year - start_year
|
|
|
|
if time_span_in_years < 2:
|
|
time_span_string = "1 year"
|
|
else:
|
|
time_span_string = f"{time_span_in_years} years"
|
|
|
|
return time_span_string
|
|
|
|
else:
|
|
# Then it means both start_date and end_date are in YYYY-MM-DD or YYYY-MM
|
|
# format.
|
|
end_date = get_date_object(end_date) # type: ignore
|
|
start_date = get_date_object(start_date) # type: ignore
|
|
|
|
# calculate the number of days between start_date and end_date:
|
|
timespan_in_days = (end_date - start_date).days # type: ignore
|
|
|
|
# calculate the number of years between start_date and end_date:
|
|
how_many_years = timespan_in_days // 365
|
|
if how_many_years == 0:
|
|
how_many_years_string = None
|
|
elif how_many_years == 1:
|
|
how_many_years_string = "1 year"
|
|
else:
|
|
how_many_years_string = f"{how_many_years} years"
|
|
|
|
# calculate the number of months between start_date and end_date:
|
|
how_many_months = round((timespan_in_days % 365) / 30)
|
|
if how_many_months <= 1:
|
|
how_many_months_string = "1 month"
|
|
else:
|
|
how_many_months_string = f"{how_many_months} months"
|
|
|
|
# combine howManyYearsString and howManyMonthsString:
|
|
if how_many_years_string is None:
|
|
time_span_string = how_many_months_string
|
|
else:
|
|
time_span_string = f"{how_many_years_string} {how_many_months_string}"
|
|
|
|
return time_span_string
|
|
|
|
@pydantic.computed_field
|
|
@cached_property
|
|
def url_text(self) -> Optional[str]:
|
|
"""
|
|
Return a URL text based on the `url_text_input` and `url` fields.
|
|
"""
|
|
url_text = ""
|
|
if self.url_text_input is not None:
|
|
# If the user provides a custom URL text, then use it.
|
|
url_text = self.url_text_input
|
|
elif self.url is not None:
|
|
url_text_dictionary = {
|
|
"github": "view on GitHub",
|
|
"linkedin": "view on LinkedIn",
|
|
"instagram": "view on Instagram",
|
|
"youtube": "view on YouTube",
|
|
}
|
|
url_text = "view on my website"
|
|
for key in url_text_dictionary:
|
|
if key in str(self.url):
|
|
url_text = url_text_dictionary[key]
|
|
break
|
|
|
|
return url_text
|
|
|
|
|
|
class OneLineEntry(RenderCVBaseModel):
|
|
"""This class is the data model of `OneLineEntry`."""
|
|
|
|
name: str = pydantic.Field(
|
|
title="Name",
|
|
description="The name of the entry. It will be shown as bold text.",
|
|
)
|
|
details: str = pydantic.Field(
|
|
title="Details",
|
|
description="The details of the entry. It will be shown as normal text.",
|
|
)
|
|
|
|
|
|
class NormalEntry(EntryBase):
|
|
"""This class is the data model of `NormalEntry`."""
|
|
|
|
name: str = pydantic.Field(
|
|
title="Name",
|
|
description="The name of the entry. It will be shown as bold text.",
|
|
)
|
|
|
|
|
|
class ExperienceEntry(EntryBase):
|
|
"""This class is the data model of `ExperienceEntry`."""
|
|
|
|
company: str = pydantic.Field(
|
|
title="Company",
|
|
description="The company name. It will be shown as bold text.",
|
|
)
|
|
position: str = pydantic.Field(
|
|
title="Position",
|
|
description="The position. It will be shown as normal text.",
|
|
)
|
|
|
|
|
|
class EducationEntry(EntryBase):
|
|
"""This class is the data model of `EducationEntry`."""
|
|
|
|
institution: str = pydantic.Field(
|
|
title="Institution",
|
|
description="The institution name. It will be shown as bold text.",
|
|
examples=["Bogazici University"],
|
|
)
|
|
area: str = pydantic.Field(
|
|
title="Area",
|
|
description="The area of study. It will be shown as normal text.",
|
|
)
|
|
study_type: Optional[str] = pydantic.Field(
|
|
default=None,
|
|
title="Study Type",
|
|
description="The type of the degree.",
|
|
examples=["BS", "BA", "PhD", "MS"],
|
|
)
|
|
|
|
|
|
class PublicationEntry(RenderCVBaseModel):
|
|
"""This class is the data model of `PublicationEntry`."""
|
|
|
|
title: str = pydantic.Field(
|
|
title="Title of the Publication",
|
|
description="The title of the publication. It will be shown as bold text.",
|
|
)
|
|
authors: list[str] = pydantic.Field(
|
|
title="Authors",
|
|
description="The authors of the publication in order as a list of strings.",
|
|
)
|
|
doi: str = pydantic.Field(
|
|
title="DOI",
|
|
description="The DOI of the publication.",
|
|
examples=["10.48550/arXiv.2310.03138"],
|
|
)
|
|
date: int | RenderCVDate = pydantic.Field(
|
|
title="Publication Date",
|
|
description="The date of the publication.",
|
|
examples=["2021-10-31", "2010"],
|
|
)
|
|
journal: Optional[str] = pydantic.Field(
|
|
default=None,
|
|
title="Journal",
|
|
description="The journal or the conference name.",
|
|
)
|
|
|
|
@pydantic.field_validator("date")
|
|
@classmethod
|
|
def check_date(cls, date: int | RenderCVDate) -> int | RenderCVDate:
|
|
"""Check if the date is in the past."""
|
|
date_object = get_date_object(date)
|
|
if date_object > Date.today():
|
|
raise ValueError(
|
|
f"The publication date {date} cannot be in the future. The publication"
|
|
" date should be in the past."
|
|
)
|
|
|
|
return date
|
|
|
|
@pydantic.field_validator("doi")
|
|
@classmethod
|
|
def check_doi(cls, doi: str) -> str:
|
|
"""Check if the DOI exists in the DOI System."""
|
|
# see https://stackoverflow.com/a/60671292/18840665 for the explanation of the
|
|
# next line:
|
|
ssl._create_default_https_context = ssl._create_unverified_context
|
|
|
|
doi_url = f"http://doi.org/{doi}"
|
|
|
|
try:
|
|
urlopen(doi_url)
|
|
except HTTPError as err:
|
|
if err.code == 404:
|
|
raise ValueError(f"{doi} cannot be found in the DOI System.")
|
|
|
|
return doi
|
|
|
|
@pydantic.computed_field
|
|
@cached_property
|
|
def doi_url(self) -> str:
|
|
"""Return the URL of the DOI."""
|
|
return f"https://doi.org/{self.doi}"
|
|
|
|
@pydantic.computed_field
|
|
@cached_property
|
|
def date_string(self) -> str:
|
|
"""Return the date string of the publication."""
|
|
if isinstance(self.date, int):
|
|
date_string = str(self.date)
|
|
elif isinstance(self.date, str):
|
|
date_object = get_date_object(self.date)
|
|
date_string = format_date(date_object)
|
|
else:
|
|
date_string = ""
|
|
|
|
return date_string
|
|
|
|
|
|
# ======================================================================================
|
|
# Section models: ======================================================================
|
|
# ======================================================================================
|
|
# Each section data model has a field called `entry_type` and a field called `entries`.
|
|
# Since the same pydantic.Field object is used in all of the section models, it is
|
|
# defined as a separate variable and used in all of the section models:
|
|
entry_type_field_of_section_model = pydantic.Field(
|
|
title="Entry Type",
|
|
description="The type of the entries in the section.",
|
|
)
|
|
entries_field_of_section_model = pydantic.Field(
|
|
title="Entries",
|
|
description="The entries of the section. The format depends on the entry type.",
|
|
)
|
|
|
|
|
|
class SectionBase(RenderCVBaseModel):
|
|
"""This class is the parent class of all the section types. It is being used
|
|
because all of the section types have a common field called `title`.
|
|
"""
|
|
|
|
# Title is excluded from the JSON schema because this will be written by RenderCV
|
|
# depending on the key in the input file.
|
|
title: Optional[str] = pydantic.Field(default=None, exclude=True)
|
|
|
|
|
|
class SectionWithEducationEntries(SectionBase):
|
|
"""This class is the data model of the section with `EducationEntry`s."""
|
|
|
|
entry_type: Literal["EducationEntry"] = entry_type_field_of_section_model
|
|
entries: list[EducationEntry] = entries_field_of_section_model
|
|
|
|
|
|
class SectionWithExperienceEntries(SectionBase):
|
|
"""This class is the data model of the section with `ExperienceEntry`s."""
|
|
|
|
entry_type: Literal["ExperienceEntry"] = entry_type_field_of_section_model
|
|
entries: list[ExperienceEntry] = entries_field_of_section_model
|
|
|
|
|
|
class SectionWithNormalEntries(SectionBase):
|
|
"""This class is the data model of the section with `NormalEntry`s."""
|
|
|
|
entry_type: Literal["NormalEntry"] = entry_type_field_of_section_model
|
|
entries: list[NormalEntry] = entries_field_of_section_model
|
|
|
|
|
|
class SectionWithOneLineEntries(SectionBase):
|
|
"""This class is the data model of the section with `OneLineEntry`s."""
|
|
|
|
entry_type: Literal["OneLineEntry"] = entry_type_field_of_section_model
|
|
entries: list[OneLineEntry] = entries_field_of_section_model
|
|
|
|
|
|
class SectionWithPublicationEntries(SectionBase):
|
|
"""This class is the data model of the section with `PublicationEntry`s."""
|
|
|
|
entry_type: Literal["PublicationEntry"] = entry_type_field_of_section_model
|
|
entries: list[PublicationEntry] = entries_field_of_section_model
|
|
|
|
|
|
class SectionWithTextEntries(SectionBase):
|
|
"""This class is the data model of the section with `TextEntry`s."""
|
|
|
|
entry_type: Literal["TextEntry"] = entry_type_field_of_section_model
|
|
entries: list[str] = entries_field_of_section_model
|
|
|
|
|
|
# Create a custom type called Section:
|
|
# It is a union of all the section types and the correct section type is determined by
|
|
# the entry_type field, thanks Pydantic's discriminator feature.
|
|
# See https://docs.pydantic.dev/2.5/concepts/fields/#discriminator for more information
|
|
# about discriminators.
|
|
Section = Annotated[
|
|
SectionWithEducationEntries
|
|
| SectionWithExperienceEntries
|
|
| SectionWithNormalEntries
|
|
| SectionWithOneLineEntries
|
|
| SectionWithPublicationEntries
|
|
| SectionWithTextEntries,
|
|
pydantic.Field(
|
|
discriminator="entry_type",
|
|
),
|
|
]
|
|
|
|
# ======================================================================================
|
|
# Full RenderCV data models: ===========================================================
|
|
# ======================================================================================
|
|
|
|
# RenderCV requires users to specify the entry type for each section in their CV in
|
|
# order to render the correct thing in the CV. However, for certain sections, specifying
|
|
# the entry type can be redundant (for example, for the "Education" section, the entry
|
|
# type is probably "EducationEntry"). To simplify this process for users, default entry
|
|
# types are stored in a dictionary for certain section titles so that users do not have
|
|
# to specify them.
|
|
|
|
# If you have new section titles that you would like to add to this dictionary, please
|
|
# open an issue or pull request on GitHub.
|
|
default_entry_types_for_a_given_title: dict[
|
|
str,
|
|
tuple[type[EducationEntry], type[SectionWithEducationEntries]]
|
|
| tuple[type[ExperienceEntry], type[SectionWithExperienceEntries]]
|
|
| tuple[type[PublicationEntry], type[SectionWithPublicationEntries]]
|
|
| tuple[type[NormalEntry], type[SectionWithNormalEntries]]
|
|
| tuple[type[OneLineEntry], type[SectionWithOneLineEntries]]
|
|
| tuple[type[str], type[SectionWithTextEntries]],
|
|
] = {
|
|
"Education": (EducationEntry, SectionWithEducationEntries),
|
|
"Experience": (ExperienceEntry, SectionWithExperienceEntries),
|
|
"Work Experience": (ExperienceEntry, SectionWithExperienceEntries),
|
|
"Research Experience": (ExperienceEntry, SectionWithExperienceEntries),
|
|
"Publications": (PublicationEntry, SectionWithPublicationEntries),
|
|
"Papers": (PublicationEntry, SectionWithPublicationEntries),
|
|
"Projects": (NormalEntry, SectionWithNormalEntries),
|
|
"Academic Projects": (NormalEntry, SectionWithNormalEntries),
|
|
"University Projects": (NormalEntry, SectionWithNormalEntries),
|
|
"Personal Projects": (NormalEntry, SectionWithNormalEntries),
|
|
"Certificates": (NormalEntry, SectionWithNormalEntries),
|
|
"Extracurricular Activities": (ExperienceEntry, SectionWithExperienceEntries),
|
|
"Test Scores": (OneLineEntry, SectionWithOneLineEntries),
|
|
"Skills": (OneLineEntry, SectionWithOneLineEntries),
|
|
"Programming Skills": (NormalEntry, SectionWithNormalEntries),
|
|
"Other Skills": (OneLineEntry, SectionWithOneLineEntries),
|
|
"Awards": (OneLineEntry, SectionWithOneLineEntries),
|
|
"Interests": (OneLineEntry, SectionWithOneLineEntries),
|
|
"Summary": (str, SectionWithTextEntries),
|
|
}
|
|
|
|
|
|
class SocialNetwork(RenderCVBaseModel):
|
|
"""This class is the data model of a social network."""
|
|
|
|
network: Literal[
|
|
"LinkedIn", "GitHub", "Instagram", "Orcid", "Mastodon", "Twitter"
|
|
] = pydantic.Field(
|
|
title="Social Network",
|
|
description="The social network name.",
|
|
)
|
|
username: str = pydantic.Field(
|
|
title="Username",
|
|
description="The username of the social network. The link will be generated.",
|
|
)
|
|
|
|
@pydantic.model_validator(mode="after")
|
|
@classmethod
|
|
def check_networks(cls, model):
|
|
"""Check if the `SocialNetwork` is provided correctly."""
|
|
if model.network == "Mastodon":
|
|
if not model.username.startswith("@"):
|
|
raise ValueError(
|
|
"Mastodon username should start with '@'. The username is"
|
|
f" {model.username}."
|
|
)
|
|
if model.username.count("@") > 2:
|
|
raise ValueError(
|
|
"Mastodon username should contain only two '@'. The username is"
|
|
f" {model.username}."
|
|
)
|
|
|
|
return model
|
|
|
|
@pydantic.computed_field
|
|
@cached_property
|
|
def url(self) -> pydantic.HttpUrl:
|
|
"""Return the URL of the social network."""
|
|
url_dictionary = {
|
|
"LinkedIn": "https://linkedin.com/in/",
|
|
"GitHub": "https://github.com/",
|
|
"Instagram": "https://instagram.com/",
|
|
"Orcid": "https://orcid.org/",
|
|
"Mastodon": "https://mastodon.social/",
|
|
"Twitter": "https://twitter.com/",
|
|
}
|
|
url = url_dictionary[self.network] + self.username
|
|
|
|
HttpUrlAdapter = pydantic.TypeAdapter(pydantic.HttpUrl)
|
|
url = HttpUrlAdapter.validate_python(url)
|
|
|
|
return url
|
|
|
|
|
|
class CurriculumVitae(RenderCVBaseModel):
|
|
"""This class is the data model of the CV."""
|
|
|
|
name: str = pydantic.Field(
|
|
title="Name",
|
|
description="The name of the person.",
|
|
)
|
|
label: Optional[str] = pydantic.Field(
|
|
default=None,
|
|
title="Label",
|
|
description="The label of the person.",
|
|
)
|
|
location: Optional[str] = pydantic.Field(
|
|
default=None,
|
|
title="Location",
|
|
description="The location of the person. This is not rendered currently.",
|
|
)
|
|
email: Optional[pydantic.EmailStr] = pydantic.Field(
|
|
default=None,
|
|
title="Email",
|
|
description="The email of the person. It will be rendered in the heading.",
|
|
)
|
|
phone: Optional[pydantic_phone_numbers.PhoneNumber] = None
|
|
website: Optional[pydantic.HttpUrl] = None
|
|
social_networks: Optional[list[SocialNetwork]] = pydantic.Field(
|
|
default=None,
|
|
title="Social Networks",
|
|
description=(
|
|
"The social networks of the person. They will be rendered in the heading."
|
|
),
|
|
)
|
|
section_order: Optional[list[str]] = pydantic.Field(
|
|
default=None,
|
|
title="Section Order",
|
|
description=(
|
|
"The order of sections in the CV. The section title should be used."
|
|
),
|
|
)
|
|
sections_input: dict[str, Section | list[Any]] = pydantic.Field(
|
|
default=None,
|
|
title="Sections",
|
|
description="The sections of the CV.",
|
|
alias="sections",
|
|
)
|
|
|
|
@pydantic.field_validator("sections_input")
|
|
@classmethod
|
|
def validate_sections(
|
|
cls,
|
|
sections_input: dict[str, Section | list[Any]],
|
|
) -> dict[str, Section | list[Any]]:
|
|
"""
|
|
Parse and validate the sections of the CV.
|
|
"""
|
|
if sections_input is not None:
|
|
for title, section_or_entries in sections_input.items():
|
|
if isinstance(section_or_entries, list):
|
|
title = title.replace("_", " ").title()
|
|
if title in default_entry_types_for_a_given_title:
|
|
(
|
|
entry_type,
|
|
section_type,
|
|
) = default_entry_types_for_a_given_title[title]
|
|
|
|
if entry_type is str:
|
|
entry_type = "TextEntry"
|
|
else:
|
|
entry_type = entry_type.__name__
|
|
|
|
test_section = {
|
|
"title": title,
|
|
"entry_type": entry_type,
|
|
"entries": section_or_entries,
|
|
}
|
|
|
|
section_type.model_validate(test_section)
|
|
|
|
else:
|
|
raise ValueError(
|
|
f'The entry type for the section "{title}" is not provided!'
|
|
" Please provide an entry type."
|
|
)
|
|
|
|
return sections_input
|
|
|
|
@pydantic.computed_field
|
|
@cached_property
|
|
def sections(self) -> list[Section]:
|
|
"""Return all the sections of the CV with their titles."""
|
|
sections = []
|
|
if self.sections_input is not None:
|
|
for title, section_or_entries in self.sections_input.items():
|
|
title = title.replace("_", " ").title()
|
|
if isinstance(section_or_entries, list):
|
|
if title in default_entry_types_for_a_given_title:
|
|
(
|
|
entry_type,
|
|
section_type,
|
|
) = default_entry_types_for_a_given_title[title]
|
|
|
|
if entry_type is str:
|
|
entry_type = "TextEntry"
|
|
else:
|
|
entry_type = entry_type.__name__
|
|
|
|
section = section_type(
|
|
title=title,
|
|
entry_type=entry_type, # type: ignore
|
|
entries=section_or_entries, # type: ignore
|
|
)
|
|
sections.append(section)
|
|
else:
|
|
raise RuntimeError(
|
|
"This error shouldn't have been raised. Please open an"
|
|
" issue on GitHub."
|
|
)
|
|
elif hasattr(section_or_entries, "entry_type"):
|
|
if section_or_entries.title is None:
|
|
section_or_entries.title = title
|
|
|
|
sections.append(section_or_entries)
|
|
|
|
else:
|
|
raise RuntimeError(
|
|
"This error shouldn't have been raised. Please open an"
|
|
" issue on GitHub."
|
|
)
|
|
|
|
return sections
|
|
|
|
|
|
# ======================================================================================
|
|
# ======================================================================================
|
|
# ======================================================================================
|
|
|
|
# Create a custom type called Design:
|
|
# It is a union of all the design options and the correct design option is determined by
|
|
# the theme field, thanks Pydantic's discriminator feature.
|
|
# See https://docs.pydantic.dev/2.5/concepts/fields/#discriminator for more information
|
|
# about discriminators.
|
|
Design = ClassicThemeOptions
|
|
|
|
|
|
class RenderCVDataModel(RenderCVBaseModel):
|
|
"""This class binds both the CV and the design information together."""
|
|
|
|
cv: CurriculumVitae = pydantic.Field(
|
|
title="Curriculum Vitae",
|
|
description="The data of the CV.",
|
|
)
|
|
design: Design = pydantic.Field(
|
|
title="Design",
|
|
description="The design information.",
|
|
discriminator="theme",
|
|
)
|
|
|
|
|
|
def escape_latex_characters(string: str) -> str:
|
|
"""Escape $\\LaTeX$ characters in a string.
|
|
|
|
This function is called during the reading of the input file. Before the validation
|
|
process, each input field's special $\\LaTeX$ characters are escaped.
|
|
|
|
Example:
|
|
```python
|
|
escape_latex_characters("This is a # string.")
|
|
```
|
|
will return:
|
|
`#!python "This is a \\# string."`
|
|
"""
|
|
|
|
# Dictionary of escape characters:
|
|
escape_characters = {
|
|
"#": "\\#",
|
|
# "$": "\\$", # Don't escape $ as it is used for math mode
|
|
"%": "\\%",
|
|
"&": "\\&",
|
|
"~": "\\textasciitilde{}",
|
|
# "_": "\\_", # Don't escape _ as it is used for math mode
|
|
# "^": "\\textasciicircum{}", # Don't escape ^ as it is used for math mode
|
|
}
|
|
|
|
# Don't escape links as hyperref package will do it automatically:
|
|
|
|
# Find all the links in the sentence:
|
|
links = re.findall(r"\[.*?\]\(.*?\)", string)
|
|
|
|
# Replace the links with a placeholder:
|
|
for link in links:
|
|
string = string.replace(link, "!!-link-!!")
|
|
|
|
# Loop through the letters of the sentence and if you find an escape character,
|
|
# replace it with its LaTeX equivalent:
|
|
copy_of_the_string = list(string)
|
|
for i, character in enumerate(copy_of_the_string):
|
|
if character in escape_characters:
|
|
new_character = escape_characters[character]
|
|
copy_of_the_string[i] = new_character
|
|
|
|
string = "".join(copy_of_the_string)
|
|
# Replace the links with the original links:
|
|
for link in links:
|
|
string = string.replace("!!-link-!!", link)
|
|
|
|
return string
|
|
|
|
|
|
def markdown_to_latex(markdown_string: str) -> str:
|
|
"""Convert a markdown string to LaTeX.
|
|
|
|
This function is called during the reading of the input file. Before the validation
|
|
process, each input field is converted from markdown to LaTeX.
|
|
|
|
Example:
|
|
```python
|
|
markdown_to_latex("This is a **bold** text with an [*italic link*](https://google.com).")
|
|
```
|
|
|
|
will return:
|
|
|
|
`#!pytjon "This is a \\textbf{bold} text with a \\href{https://google.com}{\\textit{link}}."`
|
|
|
|
Args:
|
|
markdown_string (str): The markdown string to convert.
|
|
|
|
Returns:
|
|
str: The LaTeX string.
|
|
"""
|
|
# convert links
|
|
links = re.findall(r"\[([^\]\[]*)\]\((.*?)\)", markdown_string)
|
|
if links is not None:
|
|
for link in links:
|
|
link_text = link[0]
|
|
link_url = link[1]
|
|
|
|
old_link_string = f"[{link_text}]({link_url})"
|
|
new_link_string = "\\href{" + link_url + "}{" + link_text + "}"
|
|
|
|
markdown_string = markdown_string.replace(old_link_string, new_link_string)
|
|
|
|
# convert bold
|
|
bolds = re.findall(r"\*\*([^\*]*)\*\*", markdown_string)
|
|
if bolds is not None:
|
|
for bold_text in bolds:
|
|
old_bold_text = f"**{bold_text}**"
|
|
new_bold_text = "\\textbf{" + bold_text + "}"
|
|
|
|
markdown_string = markdown_string.replace(old_bold_text, new_bold_text)
|
|
|
|
# convert italic
|
|
italics = re.findall(r"\*([^\*]*)\*", markdown_string)
|
|
if italics is not None:
|
|
for italic_text in italics:
|
|
old_italic_text = f"*{italic_text}*"
|
|
new_italic_text = "\\textit{" + italic_text + "}"
|
|
|
|
markdown_string = markdown_string.replace(old_italic_text, new_italic_text)
|
|
|
|
# convert code
|
|
codes = re.findall(r"`([^`]*)`", markdown_string)
|
|
if codes is not None:
|
|
for code_text in codes:
|
|
old_code_text = f"`{code_text}`"
|
|
new_code_text = "\\texttt{" + code_text + "}"
|
|
|
|
markdown_string = markdown_string.replace(old_code_text, new_code_text)
|
|
|
|
latex_string = markdown_string
|
|
|
|
return latex_string
|
|
|
|
|
|
@time_the_event_below("Reading and validating the input file")
|
|
def read_input_file(file_path: pathlib.Path) -> RenderCVDataModel:
|
|
"""Read the input file and return an instance of RenderCVDataModel.
|
|
|
|
This function reads the input file, converts the markdown strings to $\\LaTeX$, and
|
|
validates the input file with the data models.
|
|
|
|
Args:
|
|
file_path (str): The path to the input file.
|
|
|
|
Returns:
|
|
str: The input file as a string.
|
|
"""
|
|
# check if the file exists:
|
|
if not os.path.exists(file_path):
|
|
raise FileNotFoundError(f"The input file {file_path} doesn't exist.")
|
|
|
|
# check the file extension:
|
|
accepted_extensions = [".yaml", ".yml", ".json", ".json5"]
|
|
if file_path.suffix not in accepted_extensions:
|
|
raise ValueError(
|
|
"The input file should have one of the following extensions:"
|
|
f" {accepted_extensions}. The input file is {file_path}."
|
|
)
|
|
|
|
with open(file_path) as file:
|
|
file_content = file.read()
|
|
parsed_dictionary: dict[str, Any] = strictyaml.load(file_content).data # type: ignore
|
|
|
|
def loop_through_dictionary(dictionary: dict[str, Any]) -> dict[str, Any]:
|
|
"""Recursively loop through a dictionary and apply `markdown_to_latex` and
|
|
`escape_latex_characters` to all the fields.
|
|
|
|
Args:
|
|
dictionary (dict[str, Any]): The dictionary to loop through.
|
|
|
|
Returns:
|
|
dict[str, Any]: The dictionary with markdown_to_latex and
|
|
escape_latex_characters applied to all the fields.
|
|
"""
|
|
for key, value in dictionary.items():
|
|
if isinstance(value, str):
|
|
# if the value is a string, then apply markdown_to_latex and
|
|
# escape_latex_characters to it:
|
|
result = escape_latex_characters(value)
|
|
dictionary[key] = markdown_to_latex(result)
|
|
elif isinstance(value, list):
|
|
# if the value is a list, then loop through the list and apply
|
|
# markdown_to_latex and escape_latex_characters to each item:
|
|
for index, item in enumerate(value):
|
|
if isinstance(item, str):
|
|
result = escape_latex_characters(item)
|
|
dictionary[key][index] = markdown_to_latex(result)
|
|
elif isinstance(item, dict):
|
|
# if the item is a dictionary, then call loop_through_dictionary
|
|
# again:
|
|
dictionary[key][index] = loop_through_dictionary(item)
|
|
elif isinstance(value, dict):
|
|
# if the value is a dictionary, then call loop_through_dictionary again:
|
|
dictionary[key] = loop_through_dictionary(value)
|
|
|
|
return dictionary
|
|
|
|
parsed_dictionary = loop_through_dictionary(parsed_dictionary)
|
|
|
|
# validate the parsed dictionary by creating an instance of RenderCVDataModel:
|
|
data = RenderCVDataModel(**parsed_dictionary) ## type: ignore
|
|
|
|
return data
|
|
|
|
|
|
def generate_json_schema(json_schema_path: pathlib.Path):
|
|
"""Generate the JSON schema of the data model and save it to a file.
|
|
|
|
JSON schema is generated for the users to make it easier for them to write the input
|
|
file. The JSON Schema of RenderCV is saved in the `docs` directory of the repository
|
|
and distributed to the users with the
|
|
[JSON Schema Store](https://www.schemastore.org/).
|
|
|
|
Args:
|
|
json_schema_path (str): The path to save the JSON schema.
|
|
"""
|
|
|
|
class RenderCVSchemaGenerator(pydantic.json_schema.GenerateJsonSchema):
|
|
def generate(self, schema, mode="validation"):
|
|
json_schema = super().generate(schema, mode=mode)
|
|
json_schema["title"] = "RenderCV Input"
|
|
|
|
# remove the description of the class (RenderCVDataModel)
|
|
del json_schema["description"]
|
|
|
|
# add $id
|
|
json_schema["$id"] = (
|
|
"https://raw.githubusercontent.com/sinaatalay/rendercv/main/schema.json"
|
|
)
|
|
|
|
# add $schema
|
|
json_schema["$schema"] = "http://json-schema.org/draft-07/schema#"
|
|
|
|
# Loop through $defs and remove docstring descriptions and fix optional
|
|
# fields
|
|
for key, value in json_schema["$defs"].items():
|
|
# Don't allow additional properties
|
|
value["additionalProperties"] = False
|
|
|
|
# I don't want the docstrings in the schema, so remove them:
|
|
if "This class" in value["description"]:
|
|
del value["description"]
|
|
|
|
# If a type is optional, then Pydantic sets the type to a list of two
|
|
# types, one of which is null. The null type can be removed since we
|
|
# already have the required field. Moreover, we would like to warn
|
|
# users if they provide null values. They can remove the fields if they
|
|
# don't want to provide them.
|
|
null_type_dict = {}
|
|
null_type_dict["type"] = "null"
|
|
for field in value["properties"].values():
|
|
if "anyOf" in field:
|
|
if (
|
|
len(field["anyOf"]) == 2
|
|
and null_type_dict in field["anyOf"]
|
|
):
|
|
field["allOf"] = [field["anyOf"][0]]
|
|
del field["anyOf"]
|
|
|
|
# In date field, we both accept normal strings and Date objects. They
|
|
# are both strings, therefore, if user provides a Date object, then
|
|
# JSON schema will complain that it matches two different types.
|
|
# Remember that all of the anyOfs are changed to oneOfs. Only one of
|
|
# the types can be matched. Therefore, we remove the first type, which
|
|
# is the string with the YYYY-MM-DD format.
|
|
if (
|
|
"date" in value["properties"]
|
|
and "anyOf" in value["properties"]["date"]
|
|
):
|
|
del value["properties"]["date"]["anyOf"][0]
|
|
|
|
return json_schema
|
|
|
|
schema = RenderCVDataModel.model_json_schema(
|
|
schema_generator=RenderCVSchemaGenerator
|
|
)
|
|
schema = json.dumps(schema, indent=2)
|
|
|
|
# Change all anyOf to oneOf
|
|
schema = schema.replace('"anyOf"', '"oneOf"')
|
|
|
|
with open(json_schema_path, "w") as f:
|
|
f.write(schema)
|