improve reference documentation of cli.py

This commit is contained in:
Sina Atalay 2024-02-14 20:06:43 +01:00
parent af1e3b669a
commit 76dccd29dc
1 changed files with 87 additions and 13 deletions

View File

@ -1,5 +1,8 @@
"""
to be continued...
This module contains the functions and classes that handle the command line interface
(CLI) of RenderCV. It uses [Typer](https://typer.tiangolo.com/) to create the CLI and
[Rich](https://rich.readthedocs.io/en/latest/) to provide a nice looking terminal
output.
"""
import json
@ -51,12 +54,21 @@ def welcome():
def warning(text):
"""Print a warning message to the terminal."""
"""Print a warning message to the terminal.
Args:
text (str): The text of the warning message.
"""
print(f"[bold yellow]{text}")
def error(text, exception=None):
"""Print an error message to the terminal."""
"""Print an error message to the terminal.
Args:
text (str): The text of the error message.
exception (Exception, optional): An exception object. Defaults to None.
"""
if exception is not None:
exception_messages = [str(arg) for arg in exception.args]
exception_message = "\n\n".join(exception_messages)
@ -68,13 +80,34 @@ def error(text, exception=None):
def information(text):
"""Print an information message to the terminal."""
"""Print an information message to the terminal.
Args:
text (str): The text of the information message.
"""
print(f"[bold green]{text}")
def get_error_message_and_location_and_value_from_a_custom_error(
error_string: str,
) -> tuple[Optional[str], Optional[str], Optional[str]]:
"""Look at a string and figure out if it's a custom error message that has been
sent from [`data_models.py`](data_models.md). If it is, then return the custom
message, location, and the input value.
This is done because sometimes we raise an error about a specific field in the model
validation level, but Pydantic doesn't give us the exact location of the error
because it's a model-level error. So, we raise a custom error with three string
arguments: message, location, and input value. Those arguments then combined into a
string by Python. This function is used to parse that custom error message and
return the three values.
Args:
error_string (str): The error message.
Returns:
tuple[Optional[str], Optional[str], Optional[str]]: The custom message,
location, and the input value.
"""
pattern = r"""\(['"](.*)['"], '(.*)', '(.*)'\)"""
match = re.search(pattern, error_string)
if match:
@ -84,6 +117,18 @@ def get_error_message_and_location_and_value_from_a_custom_error(
def handle_validation_error(exception: pydantic.ValidationError):
"""Take a Pydantic validation error and print the error messages in a nice table.
Pydantic's ValidationError object is a complex object that contains a lot of
information about the error. This function takes a ValidationError object and
extracts the error messages, locations, and the input values. Then, it prints them
in a nice table with [Rich](https://rich.readthedocs.io/en/latest/).
Args:
exception (pydantic.ValidationError): The Pydantic validation error object.
"""
# This dictionary is used to convert the error messages that Pydantic returns to
# more user-friendly messages.
error_dictionary: dict[str, str] = {
"Input should be 'present'": (
"This is not a valid date! Please use either YYYY-MM-DD, YYYY-MM, or YYYY"
@ -112,13 +157,11 @@ def handle_validation_error(exception: pydantic.ValidationError):
"This field should contain a list of items but it doesn't!"
),
}
new_errors: list[dict[str, str]] = []
end_date_error_is_found = False
errors = exception.errors()
# Check if this is a section error. If it is, we need to
# Check if this is a section error. If it is, we need to handle it differently.
# This is needed because how dm.validate_section_input function raises an exception.
# This is done to tell the user which which EntryType RenderCV excepts to see.
errors = exception.errors()
for error_object in errors.copy():
if (
"There are problems with the entries." in error_object["msg"]
@ -132,7 +175,7 @@ def handle_validation_error(exception: pydantic.ValidationError):
cause_object = error_object.__cause__
cause_object_errors = cause_object.errors()
for cause_error_object in cause_object_errors:
# we use 1: to avoid `entries` location. It is a location for
# we use [1:] to avoid `entries` location. It is a location for
# RenderCV's own data model, not the user's data model.
cause_error_object["loc"] = tuple(
list(location) + list(cause_error_object["loc"][1:])
@ -153,11 +196,15 @@ def handle_validation_error(exception: pydantic.ValidationError):
new_location.remove(location_element)
error_object["loc"] = new_location # type: ignore
# Parse all the errors and create a new list of errors.
new_errors: list[dict[str, str]] = []
end_date_error_is_found = False
for error_object in errors:
message = error_object["msg"]
location = ".".join(error_object["loc"]) # type: ignore
input = error_object["input"]
# Check if this is a custom error message:
custom_message, custom_location, custom_input_value = (
get_error_message_and_location_and_value_from_a_custom_error(message)
)
@ -168,6 +215,8 @@ def handle_validation_error(exception: pydantic.ValidationError):
location = f"{location}.{custom_location}"
input = custom_input_value
# Convert the error message to a more user-friendly message if it's in the
# error_dictionary:
if message in error_dictionary:
message = error_dictionary[message]
@ -182,9 +231,9 @@ def handle_validation_error(exception: pydantic.ValidationError):
' or YYYY format or "present"!'
)
# If the input is a dictionary or a list (the model itself fails to validate),
# then don't show the input. It looks confusing and it is not helpful.
if isinstance(input, (dict, list)):
# If the input is a dictionary (the model itself fails to validate),
# then don't show the input. It looks confusing and it is not helpful.
input = ""
new_errors.append({
@ -193,6 +242,7 @@ def handle_validation_error(exception: pydantic.ValidationError):
"input": str(input),
})
# Print the errors in a nice table:
table = rich.table.Table(
title="[bold red]\nThere are some errors in the input file!\n",
title_justify="left",
@ -210,11 +260,35 @@ def handle_validation_error(exception: pydantic.ValidationError):
)
print(table)
print()
print() # Add an empty line at the end to make it look better.
def handle_exceptions(function: Callable) -> Callable:
""" """
"""Return a wrapper function that handles exceptions.
A decorator in Python is a syntactic convenience that allows a Python to interpret
the code below:
```python
@handle_exceptions
def my_function():
pass
```
as
```python
handle_exceptions(my_function)()
```
which is step by step equivalent to
1. Execute `#!python handle_exceptions(my_function)` which will return the
function called `wrapper`.
2. Execute `#!python wrapper()`.
Args:
function (Callable): The function to be wrapped.
Returns:
Callable: The wrapped function.
"""
@functools.wraps(function)
def wrapper(*args, **kwargs):