rendercv/tests/conftest.py

336 lines
10 KiB
Python
Raw Normal View History

2024-02-06 20:18:46 +00:00
import pathlib
2024-02-27 19:46:24 +00:00
import copy
2024-03-11 19:30:02 +00:00
import typing
import itertools
2024-02-06 20:18:46 +00:00
2024-02-09 19:14:46 +00:00
import jinja2
2024-02-06 20:18:46 +00:00
import pytest
2024-03-11 19:30:02 +00:00
import pydantic
import pydantic_extra_types.phone_numbers as pydantic_phone_numbers
2024-02-06 20:18:46 +00:00
2024-02-09 19:14:46 +00:00
from rendercv import data_models as dm
import rendercv.renderer as r
2024-02-23 18:10:25 +00:00
update_auxiliary_files = False
2024-02-27 19:08:31 +00:00
folder_name_dictionary = {
"rendercv_empty_curriculum_vitae_data_model": "empty",
"rendercv_filled_curriculum_vitae_data_model": "filled",
}
2024-02-23 18:10:25 +00:00
# copy sample entries from docs/generate_entry_figures_and_examples.py:
2024-02-27 19:46:24 +00:00
education_entry_dictionary = {
"institution": "Boğaziçi University",
"location": "Istanbul, Turkey",
"degree": "BS",
"area": "Mechanical Engineering",
"start_date": "2015-09",
"end_date": "2020-06",
"highlights": [
"GPA: 3.24/4.00 ([Transcript](https://example.com))",
"Awards: Dean's Honor List, Sportsperson of the Year",
],
}
2024-02-27 19:46:24 +00:00
experience_entry_dictionary = {
"company": "Some Company",
"location": "TX, USA",
"position": "Software Engineer",
"start_date": "2020-07",
"end_date": "2021-08-12",
"highlights": [
(
"Developed an [IOS application](https://example.com) that has received"
" more than **100,000 downloads**."
),
"Managed a team of **5** engineers.",
],
2024-02-23 18:10:25 +00:00
}
2024-02-27 19:46:24 +00:00
normal_entry_dictionary = {
"name": "Some Project",
"location": "Remote",
"date": "2021-09",
"highlights": [
"Developed a web application with **React** and **Django**.",
"Implemented a **RESTful API**",
],
}
2024-02-27 19:46:24 +00:00
publication_entry_dictionary = {
"title": (
"Magneto-Thermal Thin Shell Approximation for 3D Finite Element Analysis of"
" No-Insulation Coils"
),
2024-03-09 17:04:21 +00:00
"authors": ["J. Doe", "***H. Tom***", "S. Doe", "A. Andsurname"],
"date": "2021-12-08",
"journal": "IEEE Transactions on Applied Superconductivity",
"doi": "10.1109/TASC.2023.3340648",
}
2024-02-27 19:46:24 +00:00
one_line_entry_dictionary = {
2024-03-10 17:13:32 +00:00
"label": "Programming",
"details": "Python, C++, JavaScript, MATLAB",
}
2024-03-10 18:08:18 +00:00
bullet_entry_dictionary = {
"bullet": "This is a bullet entry.",
}
2024-02-07 18:18:49 +00:00
2024-02-06 20:18:46 +00:00
@pytest.fixture
def publication_entry() -> dict[str, str | list[str]]:
2024-02-27 19:46:24 +00:00
return copy.deepcopy(publication_entry_dictionary)
2024-02-06 20:18:46 +00:00
@pytest.fixture
def experience_entry() -> dict[str, str]:
2024-02-27 19:46:24 +00:00
return copy.deepcopy(experience_entry_dictionary)
2024-02-06 20:18:46 +00:00
@pytest.fixture
def education_entry() -> dict[str, str]:
2024-02-27 19:46:24 +00:00
return copy.deepcopy(education_entry_dictionary)
2024-02-06 20:18:46 +00:00
@pytest.fixture
def normal_entry() -> dict[str, str]:
2024-02-27 19:46:24 +00:00
return copy.deepcopy(normal_entry_dictionary)
2024-02-06 20:18:46 +00:00
@pytest.fixture
def one_line_entry() -> dict[str, str]:
2024-02-27 19:46:24 +00:00
return copy.deepcopy(one_line_entry_dictionary)
2024-02-06 20:18:46 +00:00
2024-03-10 18:08:18 +00:00
@pytest.fixture
def bullet_entry() -> dict[str, str]:
return copy.deepcopy(bullet_entry_dictionary)
2024-02-06 20:18:46 +00:00
@pytest.fixture
def text_entry() -> str:
return "My Text Entry with some **markdown** and [links](https://example.com)!"
2024-02-06 20:18:46 +00:00
2024-03-11 19:30:02 +00:00
def return_a_value_for_a_field_type(
field: str,
field_type: typing.Any,
) -> str:
"""Return a value for a field type.
Args:
field_type (typing.Any): _description_
Returns:
str: _description_
"""
field_dictionary = {
"institution": "Boğaziçi University",
"location": "Istanbul, Turkey",
"degree": "BS",
"area": "Mechanical Engineering",
"start_date": "2015-09",
"end_date": "2020-06",
"date": "2021-09",
"highlights": [
"Did this.",
"Did that.",
],
"company": "Some Company",
"position": "Software Engineer",
"name": "My Project",
"label": "Programming",
"details": "Python, C++, JavaScript, MATLAB",
"authors": ["J. Doe", "**H. Tom**", "S. Doe", "A. Andsurname"],
"title": (
"Magneto-Thermal Thin Shell Approximation for 3D Finite Element Analysis of"
" No-Insulation Coils"
),
"journal": "IEEE Transactions on Applied Superconductivity",
"doi": "10.1109/TASC.2023.3340648",
}
field_type_dictionary = {
pydantic.HttpUrl: "https://example.com",
pydantic_phone_numbers.PhoneNumber: "+905419999999",
str: "A string",
list[str]: ["A string", "Another string"],
int: 1,
float: 1.0,
bool: True,
}
if type(None) in typing.get_args(field_type):
return return_a_value_for_a_field_type(field, field_type.__args__[0])
elif typing.get_origin(field_type) == typing.Literal:
return field_type.__args__[0]
elif typing.get_origin(field_type) == typing.Union:
return return_a_value_for_a_field_type(field, field_type.__args__[0])
elif field in field_dictionary:
return field_dictionary[field]
elif field_type in field_type_dictionary:
return field_type_dictionary[field_type]
return "A string"
def create_combinations_of_a_model(
model: pydantic.BaseModel,
) -> list[pydantic.BaseModel]:
"""Look at the required fields and optional fields of a model and create all
possible combinations of them.
Args:
model (pydantic.BaseModel): The data model class to create combinations of.
Returns:
list[pydantic.BaseModel]: All possible instances of the model.
"""
fields = typing.get_type_hints(model)
required_fields = dict()
optional_fields = dict()
for field, field_type in fields.items():
value = return_a_value_for_a_field_type(field, field_type)
if type(None) in typing.get_args(field_type): # check if a field is optional
optional_fields[field] = value
else:
required_fields[field] = value
model_with_only_required_fields = model(**required_fields)
# create all possible combinations of optional fields
all_combinations = [model_with_only_required_fields]
for i in range(1, len(optional_fields) + 1):
for combination in itertools.combinations(optional_fields, i):
kwargs = {k: optional_fields[k] for k in combination}
model = copy.deepcopy(model_with_only_required_fields)
model.__dict__.update(kwargs)
all_combinations.append(model)
return all_combinations
@pytest.fixture
def all_combinations_of_text_entries() -> list[str]:
return [
"My Text Entry with some **markdown** and [links](https://example.com)!",
"My Text Entry with some **markdown** and [links](https://example.com)!",
"Some other *** tests, which should be tricky* to parse!**",
]
@pytest.fixture
def all_combinations_of_bullet_entries() -> list[dict[str, str]]:
return [
{"bullet": "This is a bullet entry."},
{
"bullet": (
"My Text Entry with some **markdown** and [links](https://example.com)!"
)
},
{"bullet": "Some other *** tests, which should be tricky* to parse!**"},
]
@pytest.fixture
def all_combinations_of_one_line_entries() -> list[dict[str, str]]:
return create_combinations_of_a_model(dm.OneLineEntry)
@pytest.fixture
def all_combinations_of_normal_entries() -> list[dict[str, str]]:
return create_combinations_of_a_model(dm.NormalEntry)
@pytest.fixture
def all_combinations_of_education_entries() -> list[dict[str, str]]:
return create_combinations_of_a_model(dm.EducationEntry)
@pytest.fixture
def all_combinations_of_experience_entries() -> list[dict[str, str]]:
return create_combinations_of_a_model(dm.ExperienceEntry)
@pytest.fixture
def all_combinations_of_publication_entries() -> list[dict[str, str | list[str]]]:
return create_combinations_of_a_model(dm.PublicationEntry)
2024-02-09 19:32:58 +00:00
@pytest.fixture
2024-02-14 18:50:00 +00:00
def rendercv_data_model() -> dm.RenderCVDataModel:
return dm.get_a_sample_data_model()
2024-02-09 19:14:46 +00:00
2024-02-18 16:19:59 +00:00
@pytest.fixture
def rendercv_empty_curriculum_vitae_data_model() -> dm.CurriculumVitae:
2024-02-20 19:30:54 +00:00
return dm.CurriculumVitae(sections={"test": ["test"]})
2024-02-18 16:19:59 +00:00
@pytest.fixture
def rendercv_filled_curriculum_vitae_data_model(
text_entry,
2024-03-11 19:30:02 +00:00
all_combinations_of_publication_entries,
all_combinations_of_experience_entries,
all_combinations_of_education_entries,
all_combinations_of_normal_entries,
all_combinations_of_one_line_entries,
all_combinations_of_bullet_entries,
2024-02-18 16:19:59 +00:00
) -> dm.CurriculumVitae:
return dm.CurriculumVitae(
name="John Doe",
label="Mechanical Engineer",
location="Istanbul, Turkey",
email="johndoe@example.com",
phone="+905419999999", # type: ignore
website="https://example.com", # type: ignore
social_networks=[
dm.SocialNetwork(network="LinkedIn", username="johndoe"),
dm.SocialNetwork(network="GitHub", username="johndoe"),
dm.SocialNetwork(network="Instagram", username="johndoe"),
dm.SocialNetwork(network="Orcid", username="0000-0000-0000-0000"),
dm.SocialNetwork(network="Mastodon", username="@johndoe@example"),
dm.SocialNetwork(network="Twitter", username="johndoe"),
],
sections={
2024-03-11 19:30:02 +00:00
"Text Entries": [
2024-02-18 16:19:59 +00:00
text_entry,
text_entry,
2024-03-11 19:30:02 +00:00
"Some other *** tests, which should be tricky* to parse!**",
2024-02-18 16:19:59 +00:00
],
2024-03-11 19:30:02 +00:00
"Bullet Entries": all_combinations_of_bullet_entries,
"Publication Entries": all_combinations_of_publication_entries,
"Experience Entries": all_combinations_of_experience_entries,
"Education Entries": all_combinations_of_education_entries,
"Normal Entries": all_combinations_of_normal_entries,
"One Line Entries": all_combinations_of_one_line_entries,
2024-02-18 16:19:59 +00:00
},
)
2024-02-09 19:14:46 +00:00
@pytest.fixture
def jinja2_environment() -> jinja2.Environment:
return r.setup_jinja2_environment()
2024-02-06 20:18:46 +00:00
@pytest.fixture
def tests_directory_path() -> pathlib.Path:
return pathlib.Path(__file__).parent
@pytest.fixture
def root_directory_path(tests_directory_path) -> pathlib.Path:
return tests_directory_path.parent
@pytest.fixture
2024-02-18 16:19:59 +00:00
def auxiliary_files_directory_path(tests_directory_path) -> pathlib.Path:
return tests_directory_path / "auxiliary_files"
2024-02-07 18:18:49 +00:00
@pytest.fixture
2024-02-18 16:19:59 +00:00
def input_file_path(auxiliary_files_directory_path) -> pathlib.Path:
return auxiliary_files_directory_path / "John_Doe_CV.yaml"