from datetime import datetime from matplotlib.animation import FuncAnimation import os, json, traceback, wx import numpy as np import matplotlib import matplotlib.pyplot as plt import decimal from itertools import islice matplotlib.use("WXAgg") # for JetBrains IDE to force use wxPython as backend UI for plotting class SerialPlotter: def __init__(self, parent: wx.Frame = None) -> None: """ Dynamically plot a graph with moving window, if a finite window size set by the user. It reads the .csv file read_arduino generated, use the last line as the latest data and update the graph accordingly. It will plot multiple lines on the graph if there are more than one values on the last row of the .csv file :param parent: optional, parent frame """ self.parent = parent self.settings = json.load(open('settings.json', 'r')) self.sensors = len(self.settings['sensor_ports']) self.windowsize = self.settings['winSize'] self.fontSize = self.settings['fontSize'] self.delay = self.settings["delay"] / 1000 self.colors = ['blue', 'orange', 'green', 'yellow'] # TODO: make the figure size an UI option and pass into the settings.json #self.fig, self.axs = plt.subplots(figsize=(9, 6)) # self.fig_1 = plt.figure(1) # self.axs_1 = plt.axes() # self.fig_2 = plt.figure(2) # self.axs_2 = plt.axes() if (self.sensors == 1) : self.fig_1, self.axs_1 = plt.subplots() self.fig_1.canvas.mpl_connect('close_event', self.event_close) elif (self.sensors == 2) : self.fig_1, self.axs_1 = plt.subplots() self.fig_2, self.axs_2 = plt.subplots() self.fig_1.canvas.mpl_connect('close_event', self.event_close) self.fig_2.canvas.mpl_connect('close_event', self.event_close) elif (self.sensors == 3) : self.fig_1, self.axs_1 = plt.subplots() self.fig_2, self.axs_2 = plt.subplots() self.fig_3, self.axs_3 = plt.subplots() self.fig_1.canvas.mpl_connect('close_event', self.event_close) self.fig_2.canvas.mpl_connect('close_event', self.event_close) self.fig_3.canvas.mpl_connect('close_event', self.event_close) elif (self.sensors == 4) : self.fig_1, self.axs_1 = plt.subplots() self.fig_2, self.axs_2 = plt.subplots() self.fig_3, self.axs_3 = plt.subplots() self.fig_4, self.axs_4 = plt.subplots() self.fig_1.canvas.mpl_connect('close_event', self.event_close) self.fig_2.canvas.mpl_connect('close_event', self.event_close) self.fig_3.canvas.mpl_connect('close_event', self.event_close) self.fig_4.canvas.mpl_connect('close_event', self.event_close) self.timeStamps = {} self.sensorsData = {} self.timeElapsed = 0 # time have passed since the graph started, in seconds for i in range(self.sensors): self.timeStamps[i] = [''] self.sensorsData[i] = [0] def event_close(self, event) -> None: """ Actions need to be executed when the graph has closed. Start a new .csv file to get read for new graph and bring back the UI, if exist """ file = self.settings["file_name"] wx.MessageBox(f"File has saved as {os.path.split(file)[1]} under {os.path.split(file)[0]} directory!\n") if self.parent: self.parent.Show() def animation_1(self, t) -> None: """ render a frame of the animated graph. """ # Some of them copied from the old code, so even Eric may not 100% know what they do. ChatGPT may give a better explaination try: plt.cla() # clear previous frame # read the last line from the .csv file, the data start from the second column so omit index #0 file = open(self.settings["file_name"], "r") ndata = np.array([np.asarray(line.split(", ")[1:], dtype=np.float32) for line in islice(file, 1, None)])#read from the second row of the file ignoring headers if len(ndata) > 0: row = ndata[-1] i = 0 if 0 < self.windowsize < len(self.timeStamps[i]): self.timeStamps[i].pop(0) self.sensorsData[i].pop(0) # self.timeStamps[i].append(datetime.now().strftime('%H:%M:%S')) # version 1 # version 2, if we decide to go with this one change the list type to list[int] from list[str] self.timeStamps[i].append(str(self.timeElapsed)) self.sensorsData[i].append(row[i]) # plot a line # round the number to scientific notation self.axs_1.plot(self.timeStamps[i], self.sensorsData[i], color=self.colors[i], label=f'sensor {i + 1}, latest: {np.format_float_scientific(self.sensorsData[i][-1], precision = 2)} $\Omega$') # TODO: make the font size an UI option from the settings.json # Make the font size of values placed on x-axis and y-aixs equal to 16 (large enough) #plt.xticks(fontsize = max(self.fontSize, 10)) #plt.yticks(fontsize = max(self.fontSize, 10)) self.axs_1.tick_params(axis='both', which='both', labelsize=max(self.fontSize, 10)) # make the label of two axes large enough self.axs_1.set_xlabel('Time (seconds)', fontsize = max(self.fontSize, 10)) self.axs_1.set_ylabel(u'Resistance ($\Omega$)', fontsize = max(self.fontSize, 10)) #i += 1 self.timeElapsed += 1 # increment time # Acknowledgement: https://stackoverflow.com/a/13589144 (can you imagine how long it took me to find this before ChatGPT?) #handles, labels = self.axs.get_legend_handles_labels() #by_label = dict(zip(labels, handles)) #self.axs.legend(by_label.values(), by_label.keys(), loc='best', fontsize = max(self.fontSize, 10)) # Make the legend on graph large enough # handles, labels = self.axs_1.get_legend_handles_labels() # by_label = dict(zip(labels, handles)) # self.axs_1.legend(by_label.values(), by_label.keys(), loc='best', fontsize = max(self.fontSize, 10)) handles, labels = plt.gca().get_legend_handles_labels() by_label = dict(zip(labels, handles)) plt.legend(by_label.values(), by_label.keys(), loc='best', fontsize = max(self.fontSize, 10)) except: traceback.print_exc() def animation_2(self, t: int) -> None: """ render a frame of the animated graph. """ # Some of them copied from the old code, so even Eric may not 100% know what they do. ChatGPT may give a better explaination try: plt.cla() # clear previous frame # read the last line from the .csv file, the data start from the second column so omit index #0 file = open(self.settings["file_name"], "r") ndata = np.array([np.asarray(line.split(", ")[1:], dtype=np.float32) for line in islice(file, 1, None)])#read from the second row of the file ignoring headers if len(ndata) > 0: row = ndata[-1] i = 1 if 0 < self.windowsize < len(self.timeStamps[i]): self.timeStamps[i].pop(0) self.sensorsData[i].pop(0) # self.timeStamps[i].append(datetime.now().strftime('%H:%M:%S')) # version 1 # version 2, if we decide to go with this one change the list type to list[int] from list[str] self.timeStamps[i].append(str(self.timeElapsed)) self.sensorsData[i].append(row[i]) # plot a line # round the number to scientific notation self.axs_2.plot(self.timeStamps[i], self.sensorsData[i], color=self.colors[i], label=f'sensor {i + 1}, latest: {np.format_float_scientific(self.sensorsData[i][-1], precision = 2)} $\Omega$') # TODO: make the font size an UI option from the settings.json # Make the font size of values placed on x-axis and y-aixs equal to 16 (large enough) #self.axs_2.set_xticks(fontsize = max(self.fontSize, 10)) #self.axs_2.set_yticks(fontsize = max(self.fontSize, 10)) self.axs_2.tick_params(axis='both', which='both', labelsize=max(self.fontSize, 10)) # make the label of two axes large enough self.axs_2.set_xlabel('Time (seconds)', fontsize = max(self.fontSize, 10)) self.axs_2.set_ylabel(u'Resistance ($\Omega$)', fontsize = max(self.fontSize, 10)) #i += 1 self.timeElapsed += 1 # increment time # Acknowledgement: https://stackoverflow.com/a/13589144 (can you imagine how long it took me to find this before ChatGPT?) #handles, labels = self.axs.get_legend_handles_labels() #by_label = dict(zip(labels, handles)) #self.axs.legend(by_label.values(), by_label.keys(), loc='best', fontsize = max(self.fontSize, 10)) # Make the legend on graph large enough # handles, labels = self.axs_2.get_legend_handles_labels() # by_label = dict(zip(labels, handles)) # self.axs_2.legend(by_label.values(), by_label.keys(), loc='best', fontsize = max(self.fontSize, 10)) handles, labels = plt.gca().get_legend_handles_labels() by_label = dict(zip(labels, handles)) plt.legend(by_label.values(), by_label.keys(), loc='best', fontsize = max(self.fontSize, 10)) except: traceback.print_exc() def animation_3(self, t: int) -> None: """ render a frame of the animated graph. """ # Some of them copied from the old code, so even Eric may not 100% know what they do. ChatGPT may give a better explaination try: plt.cla() # clear previous frame # read the last line from the .csv file, the data start from the second column so omit index #0 file = open(self.settings["file_name"], "r") ndata = np.array([np.asarray(line.split(", ")[1:], dtype=np.float32) for line in islice(file, 1, None)])#read from the second row of the file ignoring headers if len(ndata) > 0: row = ndata[-1] i = 2 if 0 < self.windowsize < len(self.timeStamps[i]): self.timeStamps[i].pop(0) self.sensorsData[i].pop(0) # self.timeStamps[i].append(datetime.now().strftime('%H:%M:%S')) # version 1 # version 2, if we decide to go with this one change the list type to list[int] from list[str] self.timeStamps[i].append(str(self.timeElapsed)) self.sensorsData[i].append(row[i]) # plot a line # round the number to scientific notation self.axs_3.plot(self.timeStamps[i], self.sensorsData[i], color=self.colors[i], label=f'sensor {i + 1}, latest: {np.format_float_scientific(self.sensorsData[i][-1], precision = 2)} $\Omega$') # TODO: make the font size an UI option from the settings.json # Make the font size of values placed on x-axis and y-aixs equal to 16 (large enough) #self.axs_2.set_xticks(fontsize = max(self.fontSize, 10)) #self.axs_2.set_yticks(fontsize = max(self.fontSize, 10)) self.axs_3.tick_params(axis='both', which='both', labelsize=max(self.fontSize, 10)) # make the label of two axes large enough self.axs_3.set_xlabel('Time (seconds)', fontsize = max(self.fontSize, 10)) self.axs_3.set_ylabel(u'Resistance ($\Omega$)', fontsize = max(self.fontSize, 10)) #i += 1 self.timeElapsed += 1 # increment time # Acknowledgement: https://stackoverflow.com/a/13589144 (can you imagine how long it took me to find this before ChatGPT?) #handles, labels = self.axs.get_legend_handles_labels() #by_label = dict(zip(labels, handles)) #self.axs.legend(by_label.values(), by_label.keys(), loc='best', fontsize = max(self.fontSize, 10)) # Make the legend on graph large enough # handles, labels = self.axs_2.get_legend_handles_labels() # by_label = dict(zip(labels, handles)) # self.axs_2.legend(by_label.values(), by_label.keys(), loc='best', fontsize = max(self.fontSize, 10)) handles, labels = plt.gca().get_legend_handles_labels() by_label = dict(zip(labels, handles)) plt.legend(by_label.values(), by_label.keys(), loc='best', fontsize = max(self.fontSize, 10)) except: traceback.print_exc() def animation_4(self, t: int) -> None: """ render a frame of the animated graph. """ # Some of them copied from the old code, so even Eric may not 100% know what they do. ChatGPT may give a better explaination try: plt.cla() # clear previous frame # read the last line from the .csv file, the data start from the second column so omit index #0 file = open(self.settings["file_name"], "r") ndata = np.array([np.asarray(line.split(", ")[1:], dtype=np.float32) for line in islice(file, 1, None)])#read from the second row of the file ignoring headers if len(ndata) > 0: row = ndata[-1] i = 3 if 0 < self.windowsize < len(self.timeStamps[i]): self.timeStamps[i].pop(0) self.sensorsData[i].pop(0) # self.timeStamps[i].append(datetime.now().strftime('%H:%M:%S')) # version 1 # version 2, if we decide to go with this one change the list type to list[int] from list[str] self.timeStamps[i].append(str(self.timeElapsed)) self.sensorsData[i].append(row[i]) # plot a line # round the number to scientific notation self.axs_4.plot(self.timeStamps[i], self.sensorsData[i], color=self.colors[i], label=f'sensor {i + 1}, latest: {np.format_float_scientific(self.sensorsData[i][-1], precision = 2)} $\Omega$') # TODO: make the font size an UI option from the settings.json # Make the font size of values placed on x-axis and y-aixs equal to 16 (large enough) #self.axs_2.set_xticks(fontsize = max(self.fontSize, 10)) #self.axs_2.set_yticks(fontsize = max(self.fontSize, 10)) self.axs_4.tick_params(axis='both', which='both', labelsize=max(self.fontSize, 10)) # make the label of two axes large enough self.axs_4.set_xlabel('Time (seconds)', fontsize = max(self.fontSize, 10)) self.axs_4.set_ylabel(u'Resistance ($\Omega$)', fontsize = max(self.fontSize, 10)) #i += 1 self.timeElapsed += 1 # increment time # Acknowledgement: https://stackoverflow.com/a/13589144 (can you imagine how long it took me to find this before ChatGPT?) #handles, labels = self.axs.get_legend_handles_labels() #by_label = dict(zip(labels, handles)) #self.axs.legend(by_label.values(), by_label.keys(), loc='best', fontsize = max(self.fontSize, 10)) # Make the legend on graph large enough # handles, labels = self.axs_2.get_legend_handles_labels() # by_label = dict(zip(labels, handles)) # self.axs_2.legend(by_label.values(), by_label.keys(), loc='best', fontsize = max(self.fontSize, 10)) handles, labels = plt.gca().get_legend_handles_labels() by_label = dict(zip(labels, handles)) plt.legend(by_label.values(), by_label.keys(), loc='best', fontsize = max(self.fontSize, 10)) except: traceback.print_exc() def plotting_1(self) -> FuncAnimation: """ animate the dynamic plot """ ani_1 = FuncAnimation(self.fig_1, self.animation_1, blit=False, interval=self.delay * 1000, save_count=60) return ani_1 def plotting_2(self) -> FuncAnimation: """ animate the dynamic plot """ ani_2 = FuncAnimation(self.fig_2, self.animation_2, blit=False, interval=self.delay * 1000, save_count=60) return ani_2 def plotting_3(self) -> FuncAnimation: """ animate the dynamic plot """ ani_3 = FuncAnimation(self.fig_3, self.animation_3, blit=False, interval=self.delay * 1000, save_count=60) return ani_3 def plotting_4(self) -> FuncAnimation: """ animate the dynamic plot """ ani_4 = FuncAnimation(self.fig_3, self.animation_3, blit=False, interval=self.delay * 1000, save_count=60) return ani_4